12 research outputs found

    Altered expression of genes controlling metabolism characterizes the tissue response to immune injury in lupus.

    Get PDF
    To compare lupus pathogenesis in disparate tissues, we analyzed gene expression profiles of human discoid lupus erythematosus (DLE) and lupus nephritis (LN). We found common increases in myeloid cell-defining gene sets and decreases in genes controlling glucose and lipid metabolism in lupus-affected skin and kidney. Regression models in DLE indicated increased glycolysis was correlated with keratinocyte, endothelial, and inflammatory cell transcripts, and decreased tricarboxylic (TCA) cycle genes were correlated with the keratinocyte signature. In LN, regression models demonstrated decreased glycolysis and TCA cycle genes were correlated with increased endothelial or decreased kidney cell transcripts, respectively. Less severe glomerular LN exhibited similar alterations in metabolism and tissue cell transcripts before monocyte/myeloid cell infiltration in some patients. Additionally, changes to mitochondrial and peroxisomal transcripts were associated with specific cells rather than global signal changes. Examination of murine LN gene expression demonstrated metabolic changes were not driven by acute exposure to type I interferon and could be restored after immunosuppression. Finally, expression of HAVCR1, a tubule damage marker, was negatively correlated with the TCA cycle signature in LN models. These results indicate that altered metabolic dysfunction is a common, reversible change in lupus-affected tissues and appears to reflect damage downstream of immunologic processes

    Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting.

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene-drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention

    Alite calcium sulfoaluminate cement: chemistry and thermodynamics

    Get PDF
    Calcium sulfoaluminate (CA)cementisabinderofincreasinginteresttothecementindustryandisundergoingrapiddevelopment.Currentformulationsdonotcontainalite;however,alitecalciumsulfoaluminate(a−CA) cement is a binder of increasing interest to the cement industry and is undergoing rapid development. Current formulations do not contain alite; however, alite calcium sulfoaluminate (a-CA) cements can combine the favourable characteristics of Portland cement (PC) with those of CAcementwhilealsohavingalowercarbondioxidefootprintthanthecurrentgenerationofPCclinkers.Thispaperpresentstworesultsontheformationofa−CA cement while also having a lower carbon dioxide footprint than the current generation of PC clinkers. This paper presents two results on the formation of a-CA clinkers. The first is a thermodynamic study demonstrating that the production of a-CAclinkerispossiblewithouttheuseofmineralisers,dopingwithforeignelements,orusingmultiplestagesofheating.Itisestablishedthata−CA clinker is possible without the use of mineralisers, doping with foreign elements, or using multiple stages of heating. It is established that a-CA clinker can be readily produced in a standard process by controlling the oxygen and sulfur dioxide fugacity in the atmosphere. This allows for the stabilisation of ye’elimite to the higher temperatures required for alite stability. The second result establishes that when using fluorine to mineralise a-C$A clinker production, the iron content in the clinker is also an important variable. Although the exact mechanism of alite stabilisation is not known, it is shown that alite formation increases with the combination of calcium fluoride and iron (III) oxide in the mix

    Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus.

    No full text
    Systemic lupus erythematosus (SLE) is characterized by abnormalities in B cell and T cell function, but the role of disturbances in the activation status of macrophages (Mϕ) has not been well described in human patients. To address this, gene expression profiles from isolated lymphoid and myeloid populations were analyzed to identify differentially expressed (DE) genes between healthy controls and patients with either inactive or active SLE. While hundreds of DE genes were identified in B and T cells of active SLE patients, there were no DE genes found in B or T cells from patients with inactive SLE compared to healthy controls. In contrast, large numbers of DE genes were found in myeloid cells (MC) from both active and inactive SLE patients. Among the DE genes were several known to play roles in Mϕ activation and polarization, including the M1 genes STAT1 and SOCS3 and the M2 genes STAT3, STAT6, and CD163. M1-associated genes were far more frequent in data sets from active versus inactive SLE patients. To characterize the relationship between Mϕ activation and disease activity in greater detail, weighted gene co-expression network analysis (WGCNA) was used to identify modules of genes associated with clinical activity in SLE patients. Among these were disease activity-correlated modules containing activation signatures of predominantly M1-associated genes. No disease activity-correlated modules were enriched in M2-associated genes. Pathway and upstream regulator analysis of DE genes from both active and inactive SLE MC were cross-referenced with high-scoring hits from the drug discovery Library of Integrated Network-based Cellular Signatures (LINCS) to identify new strategies to treat both stages of SLE. A machine learning approach employing MC gene modules and a generalized linear model was able to predict the disease activity status in unrelated gene expression data sets. In summary, altered MC gene expression is characteristic of both active and inactive SLE. However, disease activity is associated with an alteration in the activation of MC, with a bias toward the M1 proinflammatory phenotype. These data suggest that while hyperactivity of B cells and T cells is associated with active SLE, MC potentially direct flare-ups and remission by altering their activation status toward the M1 state

    Protease inhibitors: Current status and future prospects

    No full text
    corecore