33,180 research outputs found
Ground Truth Sampling and LANDSAT Accuracy Assessment
It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types
Positivity and strong ellipticity
We consider second-order partial differential operators in divergence
form on \Ri^d with a positive-semidefinite, symmetric, matrix of real
-coefficients and establish that is strongly elliptic if and only
if the associated semigroup kernel satisfies local lower bounds, or, if and
only if the kernel satisfies Gaussian upper and lower bounds.Comment: 9 page
Second-order operators with degenerate coefficients
We consider properties of second-order operators on \Ri^d with bounded real symmetric
measurable coefficients. We assume that almost
everywhere, but allow for the possibility that is singular. We associate
with a canonical self-adjoint viscosity operator and examine
properties of the viscosity semigroup generated by . The
semigroup extends to a positive contraction semigroup on the -spaces with
. We establish that it conserves probability, satisfies
~off-diagonal bounds and that the wave equation associated with has
finite speed of propagation. Nevertheless is not always strictly
positive because separation of the system can occur even for subelliptic
operators. This demonstrates that subelliptic semigroups are not ergodic in
general and their kernels are neither strictly positive nor H\"older
continuous. In particular one can construct examples for which both upper and
lower Gaussian bounds fail even with coefficients in C^{2-\varepsilon}(\Ri^d)
with .Comment: 44 page
On electrons and hydrogen-bond connectivity in liquid water
The network connectivity in liquid water is revised in terms of electronic
signatures of hydrogen bonds (HBs) instead of geometric criteria, in view of
recent X-ray absorption studies. The analysis is based on ab initio
molecular-dynamics simulations at ambient conditions. Even if instantaneous
thread-like structures are observed in the electronic network, they
continuously reshape in oscillations reminiscent of the r and t modes in ice
(tau~170 fs). However, two water molecules initially joint by a HB remain
effectively bound over many periods regardless of its electronic signature.Comment: 4 pages, 4 figure
Critical current of a Josephson junction containing a conical magnet
We calculate the critical current of a
superconductor/ferromagnetic/superconductor (S/FM/S) Josephson junction in
which the FM layer has a conical magnetic structure composed of an in-plane
rotating antiferromagnetic phase and an out-of-plane ferromagnetic component.
In view of the realistic electronic properties and magnetic structures that can
be formed when conical magnets such as Ho are grown with a polycrystalline
structure in thin-film form by methods such as direct current sputtering and
evaporation, we have modeled this situation in the dirty limit with a large
magnetic coherence length (). This means that the electron mean free
path is much smaller than the normalized spiral length which in
turn is much smaller than (with as the length a complete
spiral makes along the growth direction of the FM). In this physically
reasonable limit we have employed the linearized Usadel equations: we find that
the triplet correlations are short ranged and manifested in the critical
current as a rapid oscillation on the scale of . These rapid
oscillations in the critical current are superimposed on a slower oscillation
which is related to the singlet correlations. Both oscillations decay on the
scale of . We derive an analytical solution and also describe a
computational method for obtaining the critical current as a function of the
conical magnetic layer thickness.Comment: Extended version of the published paper. Additional information about
the computational method is included in the appendi
The Relationship Between Molecular Gas Tracers and Kennicutt-Schmidt Laws
We provide a model for how Kennicutt-Schmidt (KS) laws, which describe the
correlation between star formation rate and gas surface or volume density,
depend on the molecular line chosen to trace the gas. We show that, for lines
that can be excited at low temperatures, the KS law depends on how the line
critical density compares to the median density in a galaxy's star-forming
molecular clouds. High critical density lines trace regions with similar
physical properties across galaxy types, and this produces a linear correlation
between line luminosity and star formation rate. Low critical density lines
probe regions whose properties vary across galaxies, leading to a star
formation rate that varies superlinearly with line luminosity. We show that a
simple model in which molecular clouds are treated as isothermal and homogenous
can quantitatively reproduce the observed correlations between galactic
luminosities in far infrared and in the CO(1->0) and HCN(1->0) lines, and
naturally explains why these correlations have different slopes. We predict
that IR-line luminosity correlations should change slope for galaxies in which
the median density is close to the line critical density. This prediction may
be tested by observations of lines such as HCO^+(1->0) with intermediate
critical densities, or by HCN(1->0) observations of intensely star-forming high
redshift galaxies with very high densities. Recent observations by Gao et al.
hint at just such a change in slope. We argue that deviations from linearity in
the HCN(1->0)-IR correlation at high luminosity are consistent with the
assumption of a constant star formation efficiency.Comment: Accepted to ApJ. 11 pages, 4 figures, emulateapj format. This version
has some additional models exploring the effects of varying metallicity and
temperature. The conclusions are unchange
- …