66 research outputs found
Size effects and dislocation patterning in two-dimensional bending
We perform atomistic Monte Carlo simulations of bending a Lennard-Jones
single crystal in two dimensions. Dislocations nucleate only at the free
surface as there are no sources in the interior of the sample. When
dislocations reach sufficient density, they spontaneously coalesce to nucleate
grain boundaries, and the resulting microstructure depends strongly on the
initial crystal orientation of the sample. In initial yield, we find a reverse
size effect, in which larger samples show a higher scaled bending moment than
smaller samples for a given strain and strain rate. This effect is associated
with source-limited plasticity and high strain rate relative to dislocation
mobility, and the size effect in initial yield disappears when we scale the
data to account for strain rate effects. Once dislocations coalesce to form
grain boundaries, the size effect reverses and we find that smaller crystals
support a higher scaled bending moment than larger crystals. This finding is in
qualitative agreement with experimental results. Finally, we observe an
instability at the compressed crystal surface that suggests a novel mechanism
for the formation of a hillock structure. The hillock is formed when a high
angle grain boundary, after absorbing additional dislocations, becomes unstable
and folds to form a new crystal grain that protrudes from the free surface.Comment: 15 pages, 8 figure
Theory of Chiral Modulations and Fluctuations in Smectic-A Liquid Crystals Under an Electric Field
Chiral liquid crystals often exhibit periodic modulations in the molecular
director; in particular, thin films of the smectic-C* phase show a chiral
striped texture. Here, we investigate whether similar chiral modulations can
occur in the induced molecular tilt of the smectic-A phase under an applied
electric field. Using both continuum elastic theory and lattice simulations, we
find that the state of uniform induced tilt can become unstable when the system
approaches the smectic-A--smectic-C* transition, or when a high electric field
is applied. Beyond that instability point, the system develops chiral stripes
in the tilt, which induce corresponding ripples in the smectic layers. The
modulation persists up to an upper critical electric field and then disappears.
Furthermore, even in the uniform state, the system shows chiral fluctuations,
including both incipient chiral stripes and localized chiral vortices. We
compare these predictions with observed chiral modulations and fluctuations in
smectic-A liquid crystals.Comment: 11 pages, including 9 postscript figures, uses REVTeX 3.0 and
epsf.st
- …
