42 research outputs found

    Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch

    Get PDF
    Background: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset. Methodology: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as ‘‘virtual pitch’’) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component. Principal Findings: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies. Conclusions: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived i

    Evaluating motor cortical oscillations and age-related change in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is primarily characterized by impairments in social communication and the appearance of repetitive behaviors with restricted interests. Increasingly, evidence also points to a general deficit of motor tone and coordination in children and adults with ASD; yet the neural basis of motor functional impairment in ASD remains poorly characterized. In this study we used magnetoencephalography (MEG) to (1) assess potential group differences between typically developing (TD) and ASD participants in motor cortical oscillatory activity observed on a simple button-press task and (2) to do so over a sufficiently broad age-range so as to capture age-dependent changes associated with development. Event-related desynchronization was evaluated in Mu (8-13 Hz) and Beta (15-30 Hz) frequency bands (Mu-ERD, Beta-ERD). In addition, post-movement Beta rebound (PMBR), and movement-related gamma (60-90 Hz) synchrony (MRGS) were also assessed in a cohort of 123 participants (63 typically developing (TD) and 59 with ASD) ranging in age from 8 to 24.9 years. We observed significant age-dependent linear trends in Beta-ERD and MRGS power with age for both TD and ASD groups; which did not differ significantly between groups. However, for PMBR, in addition to a significant effect of age, we also observed a significant reduction in PMBR power in the ASD group (p 13.2 years (p < 0.001) and this group difference was not observed when assessing PMBR activity for the younger PMBR groups (ages 8-13.2 years; p = 0.48). Moreover, for the older ASD cohort, hierarchical regression showed a significant relationship between PMBR activity and clinical scores of ASD severity (SRS-T scores), after regressing out the effect of age (p < 0.05). Our results show substantial age-dependent changes in motor cortical oscillations (Beta-ERD and MRGS) occur for both TD and ASD children and diverge only for PMBR, and most significantly for older adolescents and adults with ASD. While the functional significance of PMBR and reduced PMBR signaling remains to be fully elucidated, these results underscore the importance of considering age as a factor when assessing motor cortical oscillations and group differences in children with ASD

    Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds

    Get PDF
    The perception of speech is usually an effortless and reliable process even in highly adverse listening conditions. In addition to external sound sources, the intelligibility of speech can be reduced by degradation of the structure of speech signal itself, for example by digital compression of sound. This kind of distortion may be even more detrimental to speech intelligibility than external distortion, given that the auditory system will not be able to utilize sound source-specific acoustic features, such as spatial location, to separate the distortion from the speech signal. The perceptual consequences of acoustic distortions on speech intelligibility have been extensively studied. However, the cortical mechanisms of speech perception in adverse listening conditions are not well known at present, particularly in situations where the speech signal itself is distorted. The aim of this thesis was to investigate the cortical mechanisms underlying speech perception in conditions where speech is less intelligible due to external distortion or as a result of digital compression. In the studies of this thesis, the intelligibility of speech was varied either by digital compression or addition of stochastic noise. Cortical activity related to the speech stimuli was measured using magnetoencephalography (MEG). The results indicated that degradation of speech sounds by digital compression enhanced the evoked responses originating from the auditory cortex, whereas addition of stochastic noise did not modulate the cortical responses. Furthermore, it was shown that if the distortion was presented continuously in the background, the transient activity of auditory cortex was delayed. On the perceptual level, digital compression reduced the comprehensibility of speech more than additive stochastic noise. In addition, it was also demonstrated that prior knowledge of speech content enhanced the intelligibility of distorted speech substantially, and this perceptual change was associated with an increase in cortical activity within several regions adjacent to auditory cortex. In conclusion, the results of this thesis show that the auditory cortex is very sensitive to the acoustic features of the distortion, while at later processing stages, several cortical areas reflect the intelligibility of speech. These findings suggest that the auditory system rapidly adapts to the variability of the auditory environment, and can efficiently utilize previous knowledge of speech content in deciphering acoustically degraded speech signals.Puheen havaitseminen on useimmiten vaivatonta ja luotettavaa myös erittÀin huonoissa kuunteluolosuhteissa. Puheen ymmÀrrettÀvyys voi kuitenkin heikentyÀ ympÀristön hÀiriölÀhteiden lisÀksi myös silloin, kun puhesignaalin rakennetta muutetaan esimerkiksi pakkaamalla digitaalista ÀÀntÀ. TÀllainen hÀiriö voi heikentÀÀ ymmÀrrettÀvyyttÀ jopa ulkoisia hÀiriöitÀ voimakkaammin, koska kuulojÀrjestelmÀ ei pysty hyödyntÀmÀÀn ÀÀnilÀhteen ominaisuuksia, kuten ÀÀnen tulosuuntaa, hÀiriön erottelemisessa puheesta. Akustisten hÀiriöiden vaikutuksia puheen havaitsemiseen on tutkttu laajalti, mutta havaitsemiseen liittyvÀt aivomekanismit tunnetaan edelleen melko puutteelisesti etenkin tilanteissa, joissa itse puhesignaali on laadultaan heikentynyt. TÀmÀn vÀitöskirjan tavoitteena oli tutkia puheen havaitsemisen aivomekanismeja tilanteissa, joissa puhesignaali on vaikeammin ymmÀrrettÀvissÀ joko ulkoisen ÀÀnilÀhteen tai digitaalisen pakkauksen vuoksi. VÀitöskirjan neljÀssÀ osatutkimuksessa lyhyiden puheÀÀnien ja jatkuvan puheen ymmÀrrettÀvyyttÀ muokattiin joko digitaalisen pakkauksen kautta tai lisÀÀmÀllÀ puhesignaaliin satunnaiskohinaa. PuheÀrsykkeisiin liittyvÀÀ aivotoimintaa tutkittiin magnetoenkefalografia-mittauksilla. Tutkimuksissa havaittiin, ettÀ kuuloaivokuorella syntyneet herÀtevasteet voimistuivat, kun puheÀÀntÀ pakattiin digitaalisesti. Sen sijaan puheÀÀniin lisÀtty satunnaiskohina ei vaikuttanut herÀtevasteisiin. Edelleen, mikÀli puheÀÀnien taustalla esitettiin jatkuvaa hÀiriötÀ, kuuloaivokuoren aktivoituminen viivÀstyi hÀiriön intensiteetin kasvaessa. Kuuntelukokeissa havaittiin, ettÀ digitaalinen pakkaus heikentÀÀ puheÀÀnien ymmÀrrettÀvyyttÀ voimakkaammin kuin satunnaiskohina. LisÀksi osoitettiin, ettÀ aiempi tieto puheen sisÀllöstÀ paransi merkittÀvÀsti hÀiriöisen puheen ymmÀrrettÀvyyttÀ, mikÀ heijastui aivotoimintaan kuuloaivokuoren viereisillÀ aivoalueilla siten, ettÀ ymmÀrrettÀvÀ puhe aiheutti suuremman aktivaation kuin heikosti ymmÀrrettÀvÀ puhe. VÀitöskirjan tulokset osoittavat, ettÀ kuuloaivokuori on erittÀin herkkÀ puheÀÀnien akustisille hÀiriöille, ja myöhemmissÀ prosessoinnin vaiheissa useat kuuloaivokuoren viereiset aivoalueet heijastavat puheen ymmÀrrettÀvyyttÀ. Tulosten mukaan voi olettaa, ettÀ kuulojÀrjestelmÀ mukautuu nopeasti ÀÀniympÀristön vaihteluihin muun muassa hyödyntÀmÀllÀ aiempaa tietoa puheen sisÀllöstÀ tulkitessaan hÀiriöistÀ puhesignaalia
    corecore