174 research outputs found

    Layer-by-Layer-Coated Cellulose Fibers Enable the Production of Porous, Flame-Retardant, and Lightweight Materials

    Get PDF
    New sustainable materialsproduced by green processing routes arerequired in order to meet the concepts of circular economy. The replacementof insulating materials comprising flammable synthetic polymers bybio-based materials represents a potential opportunity to achievethis task. In this paper, low-density and flame-retardant (FR) porousfiber networks are prepared by assembling Layer-by-Layer (LbL)-functionalizedcellulose fibers by means of freeze-drying. The LbL coating, encompassingchitosan and sodium hexametaphosphate, enables the formation of aself-sustained porous structure by enhancing fiber-fiber interactionsduring the freeze-drying process. Fiber networks prepared from 3 Bi-Layer(BL)-coated fibers contain 80% wt of cellulose and can easily self-extinguishthe flame during flammability tests in vertical configuration whiledisplaying extremely low combustion rates in forced combustion tests.Smoke release is 1 order of magnitude lower than that of commerciallyavailable polyurethane foams. Such high FR efficiency is ascribedto the homogeneity of the deposited assembly, which produces a protectiveexoskeleton at the air/cellulose interface. The results reported inthis paper represent an excellent opportunity for the developmentof fire-safe materials, encompassing natural components where sustainabilityand performance are maximized

    Sustainable and Green Production of Nanostructured Cellulose by a 2-Step Mechano-Enzymatic Process

    Get PDF
    Nanostructured cellulose (NC) represents an emerging sustainable biomaterial for diverse biotechnological applications; however, its production requires hazardous chemicals that render the process ecologically unfriendly. Using commercial plant-derived cellulose, an innovative strategy for NC production based on the combination of mechanical and enzymatic approaches was proposed as a sustainable alternative to conventional chemical procedures. After ball milling, the average length of the fibers was reduced by one order of magnitude (down to 10–20 ÎŒm) and the crystallinity index decreased from 0.54 to 0.07–0.18. Moreover, a 60 min ball milling pre-treatment followed by 3 h Cellic Ctec2 enzymatic hydrolysis led to NC production (15% yield). Analysis of the structural features of NC obtained by the mechano-enzymatic process revealed that the diameters of the obtained cellulose fibrils and particles were in the range of 200–500 nm and approximately 50 nm, respectively. Interestingly, the film-forming property on polyethylene (coating ≅ 2 ÎŒm thickness) was successfully demonstrated and a significant reduction (18%) of the oxygen transmission rate was obtained. Altogether, these findings demonstrated that nanostructured cellulose could be successfully produced using a novel, cheap, and rapid 2-step physico-enzymatic process that provides a potential green and sustainable route that could be exploitable in future biorefineries

    In Vivo Administration of Replication-Deficient Mutant HSV-1 Targets Professional APCs and Induces Efficient CD4+ T Helper Responses

    Get PDF
    Both neutralizing antibodies and cytotoxic T cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. These findings have critical implications in the design of vaccination strategies aimed at triggering and sustaining antigen specific CD4+ in addition to CD8+ effector immune responses. Here we show that a recombinant replication-deficient HSV-1 vector encoding the HIV-1 matrix protein p17 (T0-p17) is capable to infect professional APCs in vitro and in vivo without interfering with the endogenous MHC class II processing of the transgene encoded antigen. Moreover, we show that injection of T0-p17 in the mouse dermis generates a strong p17specific CD4+ T helper response preceding both cytotoxic and humoral responses. Importantly, T0-p17 infected peritoneal macrophages were capable to trigger a longlasting expansion of p17-specific CD4+ T cells in vitro. Because of their capability to infect professional APCs without interfering with their biological functions, replication-deficient HSV vectors are appealing candidates for the development of vaccines able to trigger strong T helper responses. from 2005 International Meeting of The Institute of Human Virology Baltimore, USA, 29 August – 2 September 200

    Field clinical study evaluating the efficacy and safety of an oral formulation containing milbemycin oxime/praziquantel (MilbemaxÂź, Novartis Animal Health) in the chemoprevention of the zoonotic canine infection by Dirofilaria repens

    Get PDF
    Dirofilaria repens is the causative agent of subcutaneous dirofilariosis of dogs, other animals and humans. This nematode is transmitted by mosquitoes of Aedes, Anopheles and Culex genera. In dogs, the parasite may cause subclinical infection or cutaneous signs. Recently, D. repens has emerged and spread in different geographical areas, with an increase of cases in dogs and humans. Chemoprevention in dogs in endemic areas is the most reliable approach for controlling this infection. This paper describes a randomized, blocked and multicentric clinical field study investigating the efficacy of an oral, chewable formulation containing milbemycin oxime/praziquantel (MilbemaxŸ, Novartis Animal Health) in the chemoprevention of subcutaneous dirofilariosis in dogs. METHODS: This study was conducted in endemic areas of Italy. A total of 249 dogs, at two sites, negative for D. repens, were allocated into two groups (i.e. Treated -T1 vs Untreated-T2) with a ratio of 1:1, and subjected to clinical visits and blood sampling once monthly until the end of the study. All blood samples were microscopically and genetically examined. Animals belonging to T1 group received a minimum target dose of 0.5 mg/kg bodyweight of milbemycin oxime and 5 mg/kg of praziquantel in commercial tablets (MilbemaxŸ) according body weight once every 4 weeks. Animals of group T2 were not treated with MilbemaxŸ but received, when necessary, specific parasiticide treatments. The study duration was 336 ± 2 days for each dog. RESULTS: A total of 219 dogs completed the study (i.e. 111 in T1 and 108 in T2), while 30 dogs (i.e. 13 in T1, 17 in T2) were withdrawn for a variety of reasons unrelated to administration of MilbemaxŸ. The percentages of animals not showing microfilariae of D. repens were 100% (111 animals) in T1 and 94.7% (108 animals out of 114) in group T2. MilbemaxŸ was shown to be safe in treated dogs. CONCLUSIONS: The results of this study confirm that the monthly use of MilbemaxŸ in dogs is effective and safe for the prevention of subcutaneous dirofilariosis in endemic areas

    Treatment with metformin in twelve patients with Lafora disease

    Get PDF
    Background: Lafora disease (LD) is a rare, lethal, progressive myoclonus epilepsy for which no targeted therapy is currently available. Studies on a mouse model of LD showed a good response to metformin, a drug with a well known neuroprotective effect. For this reason, in 2016, the European Medicines Agency granted orphan designation to metformin for the treatment of LD. However, no clinical data is available thus far. Methods: We retrospectively collected data on LD patients treated with metformin referred to three Italian epilepsy centres. Results: Twelve patients with genetically confirmed LD (6 EPM2A, 6 NHLRC1) at middle/late stages of disease were treated with add-on metformin for a mean period of 18 months (range: 6-36). Metformin was titrated to a mean maintenance dose of 1167 mg/day (range: 500-2000 mg). In four patients dosing was limited by gastrointestinal side-effects. No serious adverse events occurred. Three patients had a clinical response, which was temporary in two, characterized by a reduction of seizure frequency and global clinical improvement. Conclusions: Metformin was overall safe in our small cohort of LD patients. Even though the clinical outcome was poor, this may be related to the advanced stage of disease in our cases and we cannot exclude a role of metformin in slowing down LD progression. Therefore, on the grounds of the preclinical data, we believe that treatment with metformin may be attempted as early as possible in the course of LD

    Origin of Sn(II) oxidation in tin halide perovskites

    Get PDF
    Tin-halide perovskites have great potential as photovoltaic materials, but their performance is hampered by undesirable oxidation of Sn(ii) to Sn(iv). NMR proves DMSO to be a main cause of oxidation

    Synthesis and characterization of nanocomposites based on PANI and carbon nanostructures prepared by electropolymerization

    Get PDF
    Nanocomposites based on polyaniline (PANI) and carbon nanostructures (CNSs) (graphene (G) and multiwall carbon nanotubes (MWCNTs)) were prepared by in situ electrochemical polymerization. CNSs were inserted into the PANI matrix by dispersing them into the electrolyte before the electropolymerization. Electrochemical characterization by means of cyclic voltammetry and steady state polarization were performed in order to determine conditions for electro- polymerization. Electro-polymerization of the PANI based nanocomposites was carried out at 0.75 V vs. saturated calomel electrode (SCE) for 40 and 60 minutes. The morphology and structural characteristics of the obtained nanocomposites were studied by scanning electron microscopy (SEM) and Raman spectroscopy, while thermal stability was determined using thermal gravimetric analysis (TGA). According to the morphological and structural study, fibrous and porous structure of PANI based nanocomposites was detected well embedding both G and MWCNTs. Also, strong interaction between quinoidal structure of PANI with carbon nanostructures via π–π stacking was detected by Raman spectroscopy. TGA showed the increased thermal stability of composites reinforced with CNSs, especially those reinforced with graphene

    T regulatory cells are markers of disease activity in multiple sclerosis patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore