15 research outputs found

    Adaptive optics with an infrared pyramid wavefront sensor at Keck

    Get PDF
    The study of cold or obscured, red astrophysical sources can significantly benefit from adaptive optics (AO) systems employing infrared (IR) wavefront sensors. One particular area is the study of exoplanets around M-dwarf stars and planet formation within protoplanetary disks in star-forming regions. Such objects are faint at visible wavelengths but bright enough in the IR to be used as a natural guide star for the AO system. Doing the wavefront sensing at IR wavelengths enables high-resolution AO correction for such science cases, with the potential to reach the contrasts required for direct imaging of exoplanets. To this end, a new near-infrared pyramid wavefront sensor (PyWFS) has been added to the Keck II AO system, extending the performance of the facility AO system for the study of faint red objects. We present the Keck II PyWFS, which represents a number of firsts, including the first PyWFS installed on a segmented telescope and the first use of an IR PyWFS on a 10-m class telescope. We discuss the scientific and technological advantages offered by IR wavefront sensing and present the design and commissioning of the Keck PyWFS. In particular, we report on the performance of the Selex Avalanche Photodiode for HgCdTe InfraRed Array detector used for the PyWFS and highlight the novelty of this wavefront sensor in terms of the performance for faint red objects and the improvement in contrast. The system has been commissioned for science with the vortex coronagraph in the NIRC2 IR science instrument and is being commissioned alongside a new fiber injection unit for NIRSPEC. We present the first science verification of the system—to facilitate the study of exoplanets around M-type stars

    Adaptive optics with an infrared pyramid wavefront sensor at Keck

    Get PDF
    The study of cold or obscured, red astrophysical sources can significantly benefit from adaptive optics (AO) systems employing infrared (IR) wavefront sensors. One particular area is the study of exoplanets around M-dwarf stars and planet formation within protoplanetary disks in star-forming regions. Such objects are faint at visible wavelengths but bright enough in the IR to be used as a natural guide star for the AO system. Doing the wavefront sensing at IR wavelengths enables high-resolution AO correction for such science cases, with the potential to reach the contrasts required for direct imaging of exoplanets. To this end, a new near-infrared pyramid wavefront sensor (PyWFS) has been added to the Keck II AO system, extending the performance of the facility AO system for the study of faint red objects. We present the Keck II PyWFS, which represents a number of firsts, including the first PyWFS installed on a segmented telescope and the first use of an IR PyWFS on a 10-m class telescope. We discuss the scientific and technological advantages offered by IR wavefront sensing and present the design and commissioning of the Keck PyWFS. In particular, we report on the performance of the Selex Avalanche Photodiode for HgCdTe InfraRed Array detector used for the PyWFS and highlight the novelty of this wavefront sensor in terms of the performance for faint red objects and the improvement in contrast. The system has been commissioned for science with the vortex coronagraph in the NIRC2 IR science instrument and is being commissioned alongside a new fiber injection unit for NIRSPEC. We present the first science verification of the system—to facilitate the study of exoplanets around M-type stars

    Keck Planet Imager and Characterizer: demonstrating advanced exoplanet characterization techniques for future extremely large telescopes (Conference Presentation)

    Get PDF
    The Keck Planet Imager and Characterizer (KPIC) is an upgrade to the Keck II adaptive optics system enabling high contrast imaging and high-resolution spectroscopic characterization of giant exoplanets in the mid-infrared (2-5 microns). The KPIC instrument will be developed in phases. Phase I entails the installation of an infrared pyramid wavefront sensor (PyWFS) based on a fast, low-noise SAPHIRA IR-APD array. The ultra-sensitive infrared PyWFS will enable high contrast studies of infant exoplanets around cool, red, and/or obscured targets in star forming regions. In addition, the light downstream of the PyWFS will be coupled into an array of single-mode fibers with the aid of an active fiber injection unit (FIU). In turn, these fibers route light to Keck's high-resolution infrared spectrograph NIRSPEC, so that high dispersion coronagraphy (HDC) can be implemented for the first time. HDC optimally pairs high contrast imaging and high-resolution spectroscopy allowing detailed characterization of exoplanet atmospheres, including molecular composition, spin measurements, and Doppler imaging. We will provide an overview of the instrument, its science scope, and report on recent results from on-sky commissioning of Phase I. We will discuss plans for optimizing the instrument to seed designs for similar modes on extremely large telescopes

    GPAW: open Python package for electronic-structure calculations

    Full text link
    We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE) providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation (BSE), variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support of GPU acceleration has been achieved with minor modifications of the GPAW code thanks to the CuPy library. We end the review with an outlook describing some future plans for GPAW

    Ab initio based spectroscopic and reactive data of small molecular systems

    No full text
    Computational chemical physics can give important input to astrophysical modelling and other fields of physics, where molecular properties are of importance. Understanding of spectroscopic and reactive behaviour is crucial for many systems of astrophysical interests like stars, interstellar medium and comets. Especially stellar atmospheres are of interest, because the complex physics of stars are not yet completely understood. Stars are in an unstable balance of gravitation and radiation pressure and the atmospheric dynamics have been subject of extensive modelling. Complete and accurate spectroscopic information of the atoms and molecules in these atmospheres is necessary for this attempt. In addition, the only information we have about astrophysical systems is light which is emitted or absorbed by particles in these media. This is not only true for astrophysics. In plasma physics sometimes the usage of invasive diagnostics, like Langmuir probes, is not wanted because they disturb the system. In these cases some information of the system can be regained by passively measuring infrared spectra of the plasma or by active induction of electronic transition like the laser-induced fluorescence method. Another remote sensing application is the measurement of the atmospheric composition on earth. Here, larger particles in the atmosphere as well as greenhouse gases are of current interest. Unfortunately, the experimental spectroscopic data, which is needed for the understanding and interpretation of the measured spectra, is often incomplete. This gap can be, to some extend, filled by computational chemical physics. The aim of this work was to investigate the capabilities and limitations of ab initio based potential energy surfaces for spectroscopic and reactive studies and to apply these methods to problems of rovibrational and rovibronic spectroscopy and reaction dynamics. The choice of ab initio methods and the potential fitting methods is critical for the computational chemical physics, as all further quantities directly depend on their quality. In this work modified versions of the Braams polynomial potential energy surface were used. A high level coupled cluster ab initio method was used to build potentials for a series of small hydrocarbons. Hydrocarbons can be found almost everywhere on earth and in the universe. They exist in laboratory plasmas, stellar and planetary atmospheres and interstellar gases. In all these cases, light emitted or absorbed by the molecules is an important diagnostics of the system. The potential constructed in this work partly included a cluster expansion, which adds reactant configuration spaces to the fits. This could not be done for CH_3 and higher hydrocarbons, because of the limitations of the Coupled Cluster ab initio method, which is well suited for the potential wells, but not for the dissociation regions. The examples of methyl and methane show how the potentials can be used for rovibrational spectroscopy. Results of radiation transport simulations illustrate the importance of as complete-as-possible line lists for radiation transport calculations.\\ The rovibronic spectroscopy of diatomic molecules is another important aspect for the stellar atmospheric modelling. Metal hydrides and oxides add opacity to the atmosphere in the visible light and ultraviolet frequency regions, as well as do the hydrocarbons in the infrared one. In addition the spectra of metal hydrides/oxides can be used to gather information about metal and their isotope abundances. They are used as markers for the conditions in the atmospheres of stars. In this work a new code was developed, that efficiently calculates bound-bound transitions between electronic states and bound-continuum cross sections for diatomic molecules. It also offers an adequate treatment of quasi-bound rovibrational states. One important representative of the diatoms is magnesium hydride, MgH. Before this work, line lists and photodissociation cross section were available involving the three lowest doublet states of MgH. In this work new potential energy curves were calculated and adapted to updated experimental data. This causes changes in the relative energies between the electronic states and therefore shifts in the line lists. These are important, because accurate line positions are needed for the identification of spectral lines. In addition two further electronic states were included in the calculations. This expands the spectral range of MgH into the near ultraviolet region. Radiation transport models showed significant absorption by MgH from the newly added electronic states. A second usage of the diatomic potential energy curves are photodissociation cross sections. As interstellar environments are chemically active, such data is necessary for a complete picture of the ongoing processes. The photodissociation cross sections of MgH reveal a stronger dependence of the underlying potential than the bound-bound lines. In the case of MgH the cross sections are rather weak, besides occasional resonance lines which can be several orders of magnitude stronger. As mentioned, not only spectroscopic, but also reactive behaviour of molecules is important in astrophysics. A current problem connected with this is the abundance of CH^+ in interstellar clouds. Its measured abundances do not fit the predictions from theoretical models. In addition Gerlich and co-workers recently measured low temperature H + CH^+ -> C^+ + H_2 reaction rates, which diverge from the theoretical picture and which could not be explained. In this work a reactive potential energy surface was built for the CH_2^+ system, which was then used to perform extensive calculations with quasi-classical trajectory and quantum scattering methods. It was found out, that the potentials used in previous works are not accurate enough to allow low temperature calculations. Results from these potentials must be taken with care. Furthermore, the results from the new potential energy surface indicate significantly reduced reaction rates compared to previous numerical studies. This is in agreement with the new results of Gerlich and co-workers. Nevertheless, the large error bars in the low temperature range for experimental as well as numerical results strongly suggest refined methods to be developed for both, before a final conclusion can be made. This work demonstrated the possibility of modern computational chemical physics to supply consistent data for spectroscopy and reaction dynamics. These are necessary and important inputs for fields like astrophysics, plasma physics and chemistry.Computational chemical physics can give important input to astrophysical modelling and other fields of physics, where molecular properties are of importance. Understanding of spectroscopic and reactive behaviour is crucial for many systems of astrophysical interests like stars, interstellar medium and comets. Especially stellar atmospheres are of interest, because the complex physics of stars are not yet completely understood. Stars are in an unstable balance of gravitation and radiation pressure and the atmospheric dynamics have been subject of extensive modelling. Complete and accurate spectroscopic information of the atoms and molecules in these atmospheres is necessary for this attempt. In addition, the only information we have about astrophysical systems is light which is emitted or absorbed by particles in these media. This is not only true for astrophysics. In plasma physics sometimes the usage of invasive diagnostics, like Langmuir probes, is not wanted because they disturb the system. In these cases some information of the system can be regained by passively measuring infrared spectra of the plasma or by active induction of electronic transition like the laser-induced fluorescence method. Another remote sensing application is the measurement of the atmospheric composition on earth. Here, larger particles in the atmosphere as well as greenhouse gases are of current interest. Unfortunately, the experimental spectroscopic data, which is needed for the understanding and interpretation of the measured spectra, is often incomplete. This gap can be, to some extend, filled by computational chemical physics. The aim of this work was to investigate the capabilities and limitations of ab initio based potential energy surfaces for spectroscopic and reactive studies and to apply these methods to problems of rovibrational and rovibronic spectroscopy and reaction dynamics. The choice of ab initio methods and the potential fitting methods is critical for the computational chemical physics, as all further quantities directly depend on their quality. In this work modified versions of the Braams polynomial potential energy surface were used. A high level coupled cluster ab initio method was used to build potentials for a series of small hydrocarbons. Hydrocarbons can be found almost everywhere on earth and in the universe. They exist in laboratory plasmas, stellar and planetary atmospheres and interstellar gases. In all these cases, light emitted or absorbed by the molecules is an important diagnostics of the system. The potential constructed in this work partly included a cluster expansion, which adds reactant configuration spaces to the fits. This could not be done for CH_3 and higher hydrocarbons, because of the limitations of the Coupled Cluster ab initio method, which is well suited for the potential wells, but not for the dissociation regions. The examples of methyl and methane show how the potentials can be used for rovibrational spectroscopy. Results of radiation transport simulations illustrate the importance of as complete-as-possible line lists for radiation transport calculations.\\ The rovibronic spectroscopy of diatomic molecules is another important aspect for the stellar atmospheric modelling. Metal hydrides and oxides add opacity to the atmosphere in the visible light and ultraviolet frequency regions, as well as do the hydrocarbons in the infrared one. In addition the spectra of metal hydrides/oxides can be used to gather information about metal and their isotope abundances. They are used as markers for the conditions in the atmospheres of stars. In this work a new code was developed, that efficiently calculates bound-bound transitions between electronic states and bound-continuum cross sections for diatomic molecules. It also offers an adequate treatment of quasi-bound rovibrational states. One important representative of the diatoms is magnesium hydride, MgH. Before this work, line lists and photodissociation cross section were available involving the three lowest doublet states of MgH. In this work new potential energy curves were calculated and adapted to updated experimental data. This causes changes in the relative energies between the electronic states and therefore shifts in the line lists. These are important, because accurate line positions are needed for the identification of spectral lines. In addition two further electronic states were included in the calculations. This expands the spectral range of MgH into the near ultraviolet region. Radiation transport models showed significant absorption by MgH from the newly added electronic states. A second usage of the diatomic potential energy curves are photodissociation cross sections. As interstellar environments are chemically active, such data is necessary for a complete picture of the ongoing processes. The photodissociation cross sections of MgH reveal a stronger dependence of the underlying potential than the bound-bound lines. In the case of MgH the cross sections are rather weak, besides occasional resonance lines which can be several orders of magnitude stronger. As mentioned, not only spectroscopic, but also reactive behaviour of molecules is important in astrophysics. A current problem connected with this is the abundance of CH^+ in interstellar clouds. Its measured abundances do not fit the predictions from theoretical models. In addition Gerlich and co-workers recently measured low temperature H + CH^+ -> C^+ + H_2 reaction rates, which diverge from the theoretical picture and which could not be explained. In this work a reactive potential energy surface was built for the CH_2^+ system, which was then used to perform extensive calculations with quasi-classical trajectory and quantum scattering methods. It was found out, that the potentials used in previous works are not accurate enough to allow low temperature calculations. Results from these potentials must be taken with care. Furthermore, the results from the new potential energy surface indicate significantly reduced reaction rates compared to previous numerical studies. This is in agreement with the new results of Gerlich and co-workers. Nevertheless, the large error bars in the low temperature range for experimental as well as numerical results strongly suggest refined methods to be developed for both, before a final conclusion can be made. This work demonstrated the possibility of modern computational chemical physics to supply consistent data for spectroscopy and reaction dynamics. These are necessary and important inputs for fields like astrophysics, plasma physics and chemistry

    Dielectric Properties of Selected Metal–Organic Frameworks

    No full text
    The electronic structure of a class of [Zn<sub>4</sub>O­(CO<sub>2</sub>)<sub>6</sub>] based metal–organic frameworks (MOFs) is theoretically analyzed by means of density functional perturbation theory. The calculated static dielectric constants vary in a range between 1.33 and 1.54, characterizing the structures as ultralow-<i>k</i> dielectric materials and confirming earlier estimates qualitatively. We also present the results of first-principle calculations of the real and imaginary parts of the dielectric function and give the frequency-dependent dielectric constant up to the near-ultraviolet, which is important for high frequency semiconductor and optical applications of MOFs. The dielectric and electronic properties are governed by the linker molecules, so that the band gap and the dielectric constant can be engineered

    About the Implementation of Frequency Conversion Processes in Solar Cell Device Simulations

    No full text
    Solar cells are electrical devices that can directly convert sunlight into electricity. While solar cells are a mature technology, their efficiencies are still far below the theoretical limit. The major losses in a typical semiconductor solar cell are due to the thermalization of electrons in the UV and visible range of the solar spectrum, the inability of a solar cell to absorb photons with energies below the electronic band gap, and losses due to the recombination of electrons and holes, which mainly occur at the contacts. These prevent the realization of the theoretical efficiency limit of 85% for a generic photovoltaic device. A promising strategy to harness light with minimum thermal losses outside the typical frequency range of a single junction solar cell could be frequency conversion using rare earth ions, as suggested by Trupke. In this work, we discuss the modelling of generic frequency conversion processes in the context of solar cell device simulations, which can be used to supplement experimental studies. In the spirit of a proof-of-concept study, we limit the discussion to up-conversion and restrict ourselves to a simple rare earth model system, together with a basic diode model for a crystalline silicon solar cell. The results of this show that these simulations are very useful for the development of new types of highly efficient solar cells
    corecore