101 research outputs found

    Reconfigurable antenna pattern verification

    Get PDF
    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna

    Antenna reconfiguration verification and validation

    Get PDF
    A method of testing the electrical functionality of an optically controlled switch in a reconfigurable antenna is provided. The method includes configuring one or more conductive paths between one or more feed points and one or more test point with switches in the reconfigurable antenna. Applying one or more test signals to the one or more feed points. Monitoring the one or more test points in response to the one or more test signals and determining the functionality of the switch based upon the monitoring of the one or more test points

    Structure-Function Correlation of the Human Central Retina

    Get PDF
    The impact of retinal pathology detected by high-resolution imaging on vision remains largely unexplored. Therefore, the aim of the study was to achieve high-resolution structure-function correlation of the human macula in vivo.To obtain high-resolution tomographic and topographic images of the macula spectral-domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscopy (cSLO), respectively, were used. Functional mapping of the macula was obtained by using fundus-controlled microperimetry. Custom software allowed for co-registration of the fundus mapped microperimetry coordinates with both SD-OCT and cSLO datasets. The method was applied in a cross-sectional observational study of retinal diseases and in a clinical trial investigating the effectiveness of intravitreal ranibizumab in macular telangietasia type 2. There was a significant relationship between outer retinal thickness and retinal sensitivity (p<0.001) and neurodegeneration leaving less than about 50 µm of parafoveal outer retinal thickness completely abolished light sensitivity. In contrast, functional preservation was found if neurodegeneration spared the photoreceptors, but caused quite extensive disruption of the inner retina. Longitudinal data revealed that small lesions affecting the photoreceptor layer typically precede functional detection but later cause severe loss of light sensitivity. Ranibizumab was shown to be ineffective to prevent such functional loss in macular telangietasia type 2.Since there is a general need for efficient monitoring of the effectiveness of therapy in neurodegenerative diseases of the retina and since SD-OCT imaging is becoming more widely available, surrogate endpoints derived from such structure-function correlation may become highly relevant in future clinical trials

    From Vulnerable Plaque to Vulnerable Patient

    Get PDF
    Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document will focus on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF

    The psychological science accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore