10,859 research outputs found

    Multi-channel active noise cancellation using the DSP56001 (digital signal processor)

    Get PDF
    The authors report on the performance of a portable active noise cancellation (ANC) system based around a PC hosted 20-MHz Motorola DSP56001 processor with a four-channel analog input/output (I/O) board connected to the real world via standard consumer audio components. The system will perform active noise cancellation over the frequency range of 65-500 Hz. Quantitative results are presented for the cancellation of single tone noise and of narrowband noise, and a measure of the ANC power spectrum is calculated for various parameters of the filtered-X LMS algorithm in different acoustic environments. Qualitative results based on human hearing perception of the attenuation of various narrowband and real world noise sources are also discussed

    On the optimality of subband adaptive filters

    Get PDF
    In this paper, we derive a polyphase analysis to determine the optimum filters in a subband adaptive filter (SAF) system. The structure of this optimum solution deviates from the standard SAF approach and presents its best possible solution only as an approximation. Besides this new insight into SAF error sources, the discussed analysis allows to calculate the optimum subband responses and the standard SAF approximation. Examples demonstrating the validity of our analysis and its use for determining SAF errors are presented

    Experimental and theoretical determination of sea-state bias in radar altimetry

    Get PDF
    The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions

    The Local Compressibility of Liquids near Non-Adsorbing Substrates: A Useful Measure of Solvophobicity and Hydrophobicity?

    Full text link
    We investigate the suitability of the local compressibility chi(z) as a measure of the solvophobicity or hydrophobicity of a substrate. Defining the local compressibility as the derivative of the local one-body density w.r.t. the chemical potential at fixed temperature, we use density functional theory (DFT) to calculate chi(z) for a model fluid, close to bulk liquid-gas coexistence, at various planar substrates. These range from a `neutral' substrate with a contact angle of approximately 90 degrees, which favours neither the liquid nor the gas phase, to a very solvophobic, purely repulsive substrate which exhibits complete drying (i.e. contact angle 180 degrees). We find that the maximum in the local compressibility, which occurs within one-two molecular diameters of the substrate, and the integrated quantity chi_ex (the surface excess compressibility, defined below) both increase rapidly as the contact angle increases and the substrate becomes more solvophobic. The local compressibility provides a more pronounced indicator of solvophobicity than the density depletion in the vicinity of the surface which increases only weakly with increasing contact angle. When the fluid is confined in a parallel slit with two identical solvophobic walls, or with competing solvophobic and solvophilic walls, chi(z) close to the solvophobic wall is altered little from that at the single substrate. We connect our results with simulation studies of water near to hydrophobic surfaces exploring the relationship between chi(z) and fluctuations in the local density and between chi_ex and the mean-square fluctuation in the number of adsorbed molecules.Comment: 23 pages, 9 figures, submitted to Journal of Physics: Condensed Matter as a Special Issue Articl

    A theoretical study of elastic X-ray scattering

    Get PDF
    Bragg X-ray scattering intensities are defined as scattering by the thermodynamic average electron-charge density. Purely elastic, kinematic X-ray scattering by a target in thermal equilibrium is always larger than Bragg scattering. At low temperatures, the elastic scattering becomes Bragg scattering. For large molecules, such as a crystal, at ordinary temperatures the elastic and Bragg scattering differ in a relative sense by O(N-1), where N is the number of vibrational degrees of freedom. For most practical cases the Bragg scattering is essentially the same as purely elastic scattering of X-rays

    A generalised sidelobe canceller architecture based on oversampled subband decompositions

    Get PDF
    Adaptive broadband beamforming can be performed in oversampled subband signals, whereby an independent beamformer is operated in each frequency band. This has been shown to result in a considerably reduced computational complexity. In this paper, we primarily investigate the convergence behaviour of the generalised sidelobe canceller (GSC) based on normalised least mean squares algorithm (NLMS) when operated in subbands. The minimum mean squared error can be limited, amongst other factors, by the aliasing present in the subbands. With regard to convergence speed, there is strong indication that the subband-GSC converges faster than a fullband counterpart of similar modelling capabilities. Simulations are presented

    Robust transceiver design for MIMO relay systems with tomlinson harashima precoding

    Get PDF
    In this paper we consider a robust transceiver design for two hop non-regenerative multiple-input multiple-output (MIMO) relay networks with imperfect channel state information (CSI). The transceiver consists of Tomlinson Harashima Pre-coding (THP) at the source with a linear precoder at the relay and linear equalisation at the destination. Under the assumption that each node in the network can acquire statistical knowledge of the channel in the form of a channel mean and estimation error covariance, we optimise the processors to minimise the expected arithmetic mean square error (MSE) subject to transmission power constraints at the source and relay. Simulation results demonstrate the robustness of the proposed transceiver design to channel estimation errors

    ZF DFE transceiver design for MIMO relay systems with direct source-destination link

    Get PDF
    In this paper we consider a non-linear transceiver design for non-regenerative multiple-input multiple-output (MIMO) relay networks where a direct link exists between the source and destination. Our system utilises linear processors at the source and relay as well as a zero-forcing (ZF) decision feedback equaliser (DFE) at the receiver. Under the assumption that full channel state information (CSI) is available the precoding and equaliser matrices are designed to minimise the arithmetic mean square error (MSE) whilst meeting transmit power constraints at the source and destination. The source, relay, and destination processors are provided in closed form solution. In the absence of the direct link our design particularises to a previous ZF DFE solution and as such can be viewed as a generalisation of an existing work. We demonstrate the effectiveness of the proposed solution through simulation and show that it outperforms existing techniques in terms of bit error ratio (BER)

    Tomlinson Harashima precoding design for non-regenerative MIMO relay networks

    Get PDF
    In this paper we consider the design of minimum mean square error (MMSE) transceivers for non-regenerative multiple input multiple output (MIMO) relay systems. Our design utilises Tomlinson Harashima precoding (THP) at the source along with linear processors in each stage of the network. Assuming full channel state information (CSI) is available at each node in the network the various processors are jointly optimised to minimise the system arithmetic mean square error (MSE) whilst abiding by average power constraints at both the source and relay terminals in the network. Simulations show that the proposed schemes outperform existing methods in terms of bit error ratio (BER)

    Inversion of Parahermitian matrices

    Get PDF
    Parahermitian matrices arise in broadband multiple-input multiple-output (MIMO) systems or array processing, and require inversion in some instances. In this paper, we apply a polynomial eigenvalue decomposition obtained by the sequential best rotation algorithm to decompose a parahermitian matrix into a product of two paraunitary, i.e.lossless and easily invertible matrices, and a diagonal polynomial matrix. The inversion of the overall parahermitian matrix therefore reduces to the inversion of auto-correlation sequences in this diagonal matrix. We investigate a number of different approaches to obtain this inversion, and and assessment of the numerical stability and complexity of the inversion process
    corecore