9 research outputs found
Orientation identification of the power spectrum
The image Fourier transform is widely used for defocus and astigmatism correction in electron microscopy. The shape of a power spectrum (the square of a modulus of image Fourier transform) is directly related to the three microscope’s controls, namely defocus and two-fold (two-parameter) astigmatism. In this paper the new method for power spectrum orientation identification is proposed. The method is based on the three measures which are related to the microscope’s controls. The measures are derived from the mathematical moments of the power spectrum. The method is tested with the help of a Gaussian benchmark, as well as with the scanning electron microscopy experimental images. The method can be used as an assisting tool for increasing the capabilities of defocus and astigmatism correction a of non-experienced scanning electron microscopy user, as well as a basis for automated application
Orientation identification of the power spectrum
\u3cp\u3eThe image Fourier transform is widely used for defocus and astigmatism correction in electron microscopy. The shape of a power spectrum (the square of a modulus of image Fourier transform) is directly related to the three microscope controls, namely, defocus and twofold (two-parameter) astigmatism. We propose a new method for power-spectrum orientation identification. The method is based on the three measures that are related to the microscope's controls. The measures are derived from the mathematical moments of the power spectrum and is tested with the help of a Gaussian benchmark, as well as with the scanning electron microscopy experimental images. The method can be used as an assisting tool for increasing the capabilities of defocus and astigmatism correction a of nonexperienced scanning electron microscopy user, as well as a basis for automated application.\u3c/p\u3
A derivative-based fast autofocus method in electron microscopy
Most automatic focusing methods are based on a sharpness function, which delivers a real-valued estimate of an image quality. In this paper, we study an L 2-norm derivative-based sharpness function, which has been used before based on heuristic consideration. We give a more solid mathematical foundation for this function and get a better insight into its analytical properties. Moreover an efficient autofocus method is presented, in which an artificial blur variable plays an important role.
We show that for a specific choice of the artificial blur control variable, the function is approximately a quadratic polynomial, which implies that after the recording of at least three images one can find the approximate position of the optimal defocus. This provides the speed improvement in comparison with existing approaches, which usually require recording of more than ten images for autofocus. The new autofocus method is employed for the scanning transmission electron microscopy. To be more specific, it has been implemented in the FEI scanning transmission electron microscope and its performance has been tested as a part of a particle analysis application
Acoustic modes in a duct with slowly varying impedance and non-uniform mean flow and temperature
Noise from the auxiliary power unit (APU) is becoming an increasingly important aircraft design constraint because of the noise exposure during ground operations ( ramp-noise ). Reduction of noise may be achieved by liners in the exhaust duct. In this paper, we will consider the propagation of sound through the APU exhaust duct, which is typically straight with an axially varying liner depth, a non-uniform mean flow and strong temperature gradients. We present a solution in the form of slowly varying modes of WKB type for the acoustic pressure field inside a duct with an impedance that is continuously varying in the axial direction. In cross-wise direction each WKB mode is given by eigenfunction-type solutions of the Pridmore-Brown equation. A new numerical approach based on a standard implementation of a collocation method supplemented by a path-following procedure is presented to solve this equation. We compare the results of the slowly-varying solution with a solution based on mode-matching between axial segments with constant impedance
Hemocytometric characteristics of COVID-19 patients with and without cytokine Storm syndrome on the Sysmex XN-10 hematology analyzer
COVID-19 is an ongoing global pandemic. There is an urgent need for identification and understanding of clinical and laboratory parameters related to progression towards a severe and fatal form of this illness, often preceded by a so-called cytokine-storm syndrome (CSS). Therefore, we explored the hemocytometric characteristics of COVID-19 patients in relation to the deteriorating clinical condition CSS, using the Sysmex XN-10 hematology analyzer. From March 1st till May 16th, 2020, all patients admitted to our hospital with respiratory complaints and suspected for COVID-19 were included (n=1,140 of whom n=533 COVID-19 positive). The hemocytometric parameters of immunocompetent cells in peripheral blood (neutrophils [NE], lymphocytes [LY] and monocytes [MO]) obtained upon admission to the emergency department (ED) of COVID-19 positive patients were compared with those of the COVID-19 negative ones. Moreover, patients with CSS (n=169) were compared with COVID-19 positive patients without CSS, as well as with COVID-19 negative ones. In addition to a significant reduction in leukocytes, thrombocytes and absolute neutrophils, it appeared that lymphocytes-forward scatter (LY-FSC), and reactive lymphocytes (RE-LYMPHO)/leukocytes were higher in COVID-19-positive than negative patients. At the moment of presentation, COVID-19 positive patients with CSS had different neutrophils-side fluorescence (NE-SFL), neutrophils-forward scatter (NE-FSC), LY-FSC, RE-LYMPHO/lymphocytes, antibody-synthesizing (AS)-LYMPHOs, high fluorescence lymphocytes (HFLC), MO-SSC, MO-SFL, and Reactive (RE)-MONOs. Finally, absolute eosinophils, basophils, lymphocytes, monocytes and MO-FSC were lower in patients with CSS. Hemocytometric parameters indicative of changes in immunocompetent peripheral blood cells and measured at admission to the ED were associated with COVID-19 with and without CSS