908 research outputs found

    Keynote address: the networked bank

    Get PDF
    Technology ; Banks and banking - Customer services ; Automated tellers

    Nonisomorphic curves that become isomorphic over extensions of coprime degrees

    Get PDF
    We show that one can find two nonisomorphic curves over a field K that become isomorphic to one another over two finite extensions of K whose degrees over K are coprime to one another. More specifically, let K_0 be an arbitrary prime field and let r and s be integers greater than 1 that are coprime to one another. We show that one can find a finite extension K of K_0, a degree-r extension L of K, a degree-s extension M of K, and two curves C and D over K such that C and D become isomorphic to one another over L and over M, but not over any proper subextensions of L/K or M/K. We show that such C and D can never have genus 0, and that if K is finite, C and D can have genus 1 if and only if {r,s} = {2,3} and K is an odd-degree extension of F_3. On the other hand, when {r,s}={2,3} we show that genus-2 examples occur in every characteristic other than 3. Our detailed analysis of the case {r,s} = {2,3} shows that over every finite field K there exist nonisomorphic curves C and D that become isomorphic to one another over the quadratic and cubic extensions of K. Most of our proofs rely on Galois cohomology. Without using Galois cohomology, we show that two nonisomorphic genus-0 curves over an arbitrary field remain nonisomorphic over every odd-degree extension of the base field.Comment: LaTeX, 32 pages. Further references added to the discussion in Section 1

    Generalized guidance law for collision courses

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76649/1/AIAA-21039-131.pd

    Fiction Fix 01

    Get PDF
    https://digitalcommons.unf.edu/fiction_fix/1010/thumbnail.jp

    Smart-Cut Layer Transfer of Single-Crystal SiC Using Spin-on-Glass

    Get PDF
    The authors demonstrate “smart-cut”-type layer transfer of single-crystal silicon carbide (SiC) by using spin-on-glass (SoG) as an adhesion layer. Using SoG as an adhesion layer is desirable because it can planarize the surface, facilitate an initial low temperature bond, and withstand the thermal stresses at high temperature where layer splitting occurs (800–900 °C). With SoG, the bonding of wafers with a relatively large surface roughness of 7.5–12.5 Å rms can be achieved. This compares favorably to direct (fusion) wafer bonding, which usually requires extremely low roughness (\u3c2 Å rms), typically achieved using chemical mechanical polishing (CMP) after implantation. The higher roughness tolerance of the SoG layer transfer removes the need for the CMP step, making the process more reliable and affordable for expensive materials like SiC. To demonstrate the reliability of the smart-cut layer transfer using SoG, we successfully fabricated a number of suspended MEMS structures using this technology

    Application of singular perturbation methods for three-dimensional minimum-time interception

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76166/1/AIAA-20647-787.pd

    A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction

    Get PDF
    BACKGROUND: The jellyfish green fluorescent protein (GFP) can be inserted into the middle of another protein to produce a functional, fluorescent fusion protein. Finding permissive sites for insertion, however, can be difficult. Here we describe a transposon-based approach for rapidly creating libraries of GFP fusion proteins. RESULTS: We tested our approach on the glutamate receptor subunit, GluR1, and the G protein subunit, α(s). All of the in-frame GFP insertions produced a fluorescent protein, consistent with the idea that GFP will fold and form a fluorophore when inserted into virtually any domain of another protein. Some of the proteins retained their signaling function, and the random nature of the transposition process revealed permissive sites for insertion that would not have been predicted on the basis of structural or functional models of how that protein works. CONCLUSION: This technique should greatly speed the discovery of functional fusion proteins, genetically encodable sensors, and optimized fluorescence resonance energy transfer pairs
    • …
    corecore