142 research outputs found

    Human premature aging, DNA repair and RecQ helicases

    Get PDF
    Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects

    New Insights Into DNA Helicases as Druggable Targets for Cancer Therapy

    Get PDF
    Small molecules that deter the functions of DNA damage response machinery are postulated to be useful for enhancing the DNA damaging effects of chemotherapy or ionizing radiation treatments to combat cancer by impairing the proliferative capacity of rapidly dividing cells that accumulate replicative lesions. Chemically induced or genetic synthetic lethality is a promising area in personalized medicine, but it remains to be optimized. A new target in cancer therapy is DNA unwinding enzymes known as helicases. Helicases play critical roles in all aspects of nucleic acid metabolism. We and others have investigated small molecule targeted inhibition of helicase function by compound screens using biochemical and cell-based approaches. Small molecule-induced trapping of DNA helicases may represent a generalized mechanism exemplified by certain topoisomerase and PARP inhibitors that exert poisonous consequences, especially in rapidly dividing cancer cells. Taking the lead from the broader field of DNA repair inhibitors and new information gleaned from structural and biochemical studies of DNA helicases, we predict that an emerging strategy to identify useful helicase-interacting compounds will be structure-based molecular docking interfaced with a computational approach. Potency, specificity, drug resistance, and bioavailability of helicase inhibitor drugs and targeting such compounds to subcellular compartments where the respective helicases operate must be addressed. Beyond cancer therapy, continued and new developments in this area may lead to the discovery of helicase-interacting compounds that chemically rescue clinically relevant helicase missense mutant proteins or activate the catalytic function of wild-type DNA helicases, which may have novel therapeutic application

    Setting the stage for cohesion establishment by the replication fork

    Get PDF
    Comment on: Rudra S, et al. Cell Cycle 2012; 2114-2

    Catalytic Strand Separation by RECQ1 Is Required for RPA-Mediated Response to Replication Stress

    Get PDF
    SummaryThree (BLM, WRN, and RECQ4) of the five human RecQ helicases are linked to genetic disorders characterized by genomic instability, cancer, and accelerated aging [1]. RECQ1, the first human RecQ helicase discovered [2–4] and the most abundant [5], was recently implicated in breast cancer [6, 7]. RECQ1 is an ATP-dependent DNA-unwinding enzyme (helicase) [8, 9] with roles in replication [10–12] and DNA repair [13–16]. RECQ1 is highly expressed in various tumors and cancer cell lines (for review, see [17]), and its suppression reduces cancer cell proliferation [14], suggesting a target for anti-cancer drugs. RECQ1’s assembly state plays a critical role in modulating its helicase, branch migration (BM), or strand annealing [18, 19]. The crystal structure of truncated RECQ1 [20, 21] resembles that of E. coli RecQ [22] with two RecA-like domains, a RecQ-specific zinc-binding domain and a winged-helix domain, the latter implicated in DNA strand separation and oligomer formation. In addition, a conserved aromatic loop (AL) is important for DNA unwinding by bacterial RecQ [23, 24] and truncated RECQ1 helicases [21]. To better understand the roles of RECQ1, two AL mutants (W227A and F231A) in full-length RECQ1 were characterized biochemically and genetically. The RECQ1 mutants were defective in helicase or BM but retained DNA binding, oligomerization, ATPase, and strand annealing. RECQ1-depleted HeLa cells expressing either AL mutant displayed reduced replication tract length, elevated dormant origin firing, and increased double-strand breaks that could be suppressed by exogenously expressed replication protein A (RPA). Thus, RECQ1 governs RPA’s availability in order to maintain normal replication dynamics, suppress DNA damage, and preserve genome homeostasis

    A Partially Functional DNA Helicase II Mutant Defective in Forming Stable Binary Complexes with ATP and DNA: A ROLE FOR HELICASE MOTIF III

    Get PDF
    To address the functional significance of motif III in Escherichia coli DNA helicase II, the conserved aspartic acid at position 248 was changed to asparagine. UvrDD248N failed to form stable binary complexes with either DNA or ATP. However, UvrDD248N was capable of forming an active ternary complex when both ATP and single-stranded DNA were present. The DNA-stimulated ATPase activity of UvrDD248N was reduced relative to that of wild-type UvrD with no significant change in the apparent Km for ATP. The mutant protein also demonstrated a reduced DNA unwinding activity. The requirement for high concentrations of UvrDD248N to achieve unwinding of long duplex substrates likely reflects the reduced stability of various binary and ternary complexes that must exist in the catalytic cycle of a helicase. The data suggest that motif III may act as an interface between the ATP binding and DNA binding domains of a helicase. The uvrDD248N allele was also characterized in genetic assays. The D248N protein complemented the UV-sensitive phenotype of a uvrD deletion strain to levels nearly equivalent to wild-type helicase II. In contrast, the mutant protein only partially complemented the mutator phenotype. A correlation between the level of genetic complementation and the helicase activity of UvrDD248N is discussed

    A Point Mutation in Escherichia coli DNA Helicase II Renders the Enzyme Nonfunctional in Two DNA Repair Pathways: EVIDENCE FOR INITIATION OF UNWINDING FROM A NICKIN VIVO

    Get PDF
    Biosynthetic errors and DNA damage introduce mismatches and lesions in DNA that can lead to mutations. These abnormalities are susceptible to correction by a number of DNA repair mechanisms, each of which requires a distinct set of proteins. Escherichia coli DNA helicase II has been demonstrated to function in two DNA repair pathways, methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair. To define further the role of UvrD in DNA repair a site-specific mutant was characterized. The mutation, uvrDQ251E, resides within helicase motif III, a conserved segment of amino acid homology found in a superfamily of prokaryotic and eukaryotic DNA helicases. The UvrD-Q251E protein failed to complement the mutator and ultraviolet light-sensitive phenotypes of a uvrD deletion strain indicating that the mutant protein is inactive in both mismatch repair and excision repair. Biochemical characterization revealed a significant defect in the ability of the mutant enzyme to initiate unwinding at a nick. The elongation phase of the unwinding reaction was nearly normal. Together, the biochemical and genetic data provide evidence that UvrD-Q251E is dysfunctional because the mutant protein fails to initiate unwinding at the nick(s) used to initiate excision and subsequent repair synthesis. These results provide direct evidence to support the notion that helicase II initiates unwinding from a nick in vivo in mismatch repair and excision repair

    RECQ1 Helicase Interacts with Human Mismatch Repair Factors That Regulate Genetic Recombination

    Get PDF
    Understanding the molecular and cellular functions of RecQ helicases has attracted considerable interest since several human diseases characterized by premature aging and/or cancer have been genetically linked to mutations in genes of the RecQ family. Although a human disease has not yet been genetically linked to a mutation in RECQ1, the prominent roles of RecQ helicases in the maintenance of genome stability suggest that RECQ1 helicase is likely to be important in vivo. To acquire a better understanding of RECQ1 cellular and molecular functions, we have investigated its protein interactions. Using a co-immunoprecipitation approach, we have identified several DNA repair factors that are associated with RECQ1 in vivo. Direct physical interaction of these repair factors with RECQ1 was confirmed with purified recombinant proteins. Importantly, RECQ1 stimulates the incision activity of human exonuclease 1 and the mismatch repair recognition complex MSH2/6 stimulates RECQ1 helicase activity. These protein interactions suggest a role of RECQ1 in a pathway involving mismatch repair factors. Regulation of genetic recombination, a proposed role for RecQ helicases, is supported by the identified RECQ1 protein interactions and is discussed

    Cockayne syndrome group B protein has novel strand annealing and exchange activities

    Get PDF
    Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, severe neurological abnormalities and prageroid symptoms. The CS complementation group B (CSB) protein is involved in UV-induced transcription coupled repair (TCR), base excision repair and general transcription. CSB also has a DNA-dependent ATPase activity that may play a role in remodeling chromatin in vivo. This study reports the novel finding that CSB catalyzes the annealing of complementary single-stranded DNA (ssDNA) molecules with high efficiency, and has strand exchange activity. The rate of CSB-catalyzed annealing of complementary ssDNA is 25-fold faster than the rate of spontaneous ssDNA annealing under identical in vitro conditions and the reaction occurs with a high specificity in the presence of excess non-homologous ssDNA. The specificity and intrinsic nature of the reaction is also confirmed by the observation that it is stimulated by dephosphorylation of CSB, which occurs after UV-induced DNA damage, and is inhibited in the presence of ATPγS. Potential roles of CSB in cooperation with strand annealing and exchange activities for TCR and homologous recombination are discussed
    corecore