147 research outputs found

    High-Frequency Temperature Variability Mirrors Fixed Differences in Thermal Limits of the Massive Coral \u3ci\u3ePorites lobata\u3c/i\u3e

    Get PDF
    Spatial heterogeneity in environmental characteristics can drive adaptive differentiation when contrasting environments exert divergent selection pressures. This environmental and genetic heterogeneity can substantially influence population and community resilience to disturbance events. Here, we investigated corals from the highly variable back-reef habitats of Ofu Island in American Samoa that thrive in thermal conditions known to elicit widespread bleaching and mortality elsewhere. To investigate the relative importance of acclimation versus site of origin in shaping previously observed differences in coral tolerance limits at Ofu Island, specimens of the common Indo-Pacific coral Porites lobata from locations with differing levels of thermal variability were acclimated to low and high thermal variation in controlled common garden aquaria. Overall, there were minimal effects of the acclimation exposure. Corals native to the site with the highest level of daily variability grew fastest, regardless of acclimation treatment. When exposed to lethal thermal stress, corals native to both variable sites contained elevated levels of heat shock proteins and maintained photosynthetic performance for 1–2 days longer than corals from the stable environment. Despite being separated by \u3c5 \u3ekm, there was significant genetic differentiation among coral colonies (FST=0.206, PCladocopium sp. (ITS type C15). Our study demonstrates consistent signatures of adaptation in growth and stress resistance in corals from naturally thermally variable habitats, suggesting that differences in the amount of thermal variability may be an important contributor to adaptive differentiation in reef-building corals

    Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction

    Get PDF
    Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (≥ 50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function

    Iron(III)-Salophene: An Organometallic Compound with Selective Cytotoxic and Anti-Proliferative Properties in Platinum-Resistant Ovarian Cancer Cells

    Get PDF
    Background: In this pioneer study to the biological activity of organometallic compound Iron(III)-salophene (Fe-SP) the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovariancancer cell lines were investigated. Methodology/Principal Findings: Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma) cell lines at concentrations between 100 nM and 1 μM, while the viability of HeLa cells (epithelial cervix adenocarcinoma) or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8) and intrinsic (Caspase-9) pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model. Conclusion/Significance: The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in viv

    The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A long-term (>1 Ma) record offshore Montserrat, Lesser Antilles

    Get PDF
    Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass-wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (?930 ka to ?900 ka, ?810 ka to ?760 ka, and ?190 ka to ?120 ka) that coincide with periods of increased volcano instability and mass-wasting. The youngest of these periods marks the peak in activity at the Soufrière Hills volcano. The largest flank collapse of this volcano (?130 ka) occurred towards the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km3) flank collapses of the Soufrière Hills edifice, and their timing also coincides with periods of rapid sea-level rise (>5 m/ka). Available age data from other island arc volcanoes suggests a general correlation between the timing of large landslides and periods of rapid sea-level rise, but this is not observed for volcanoes in intra-plate ocean settings. We thus infer that rapid sea-level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean-island settings

    Impact Evaluation of Merger Decisions

    Full text link
    corecore