44 research outputs found
Efficient Analysis of Complex Diagrams using Constraint-Based Parsing
This paper describes substantial advances in the analysis (parsing) of
diagrams using constraint grammars. The addition of set types to the grammar
and spatial indexing of the data make it possible to efficiently parse real
diagrams of substantial complexity. The system is probably the first to
demonstrate efficient diagram parsing using grammars that easily be retargeted
to other domains. The work assumes that the diagrams are available as a flat
collection of graphics primitives: lines, polygons, circles, Bezier curves and
text. This is appropriate for future electronic documents or for vectorized
diagrams converted from scanned images. The classes of diagrams that we have
analyzed include x,y data graphs and genetic diagrams drawn from the biological
literature, as well as finite state automata diagrams (states and arcs). As an
example, parsing a four-part data graph composed of 133 primitives required 35
sec using Macintosh Common Lisp on a Macintosh Quadra 700.Comment: 9 pages, Postscript, no fonts, compressed, uuencoded. Composed in
MSWord 5.1a for the Mac. To appear in ICDAR '95. Other versions at
ftp://ftp.ccs.neu.edu/pub/people/futrell
The synthesis of speech using a digital computer
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Physics, 1959.MIT copy bound with: Ground state reaction energy determination for K⁴¹(p,α)A³⁸ / Robert William Bird and Theodore Neil Divine. 1959.Includes bibliographical references (leaves 16-18).by Robert Peel Futrelle.B.S
Full Text and Figure Display Improves Bioscience Literature Search
When reading bioscience journal articles, many researchers focus attention on the figures and their captions. This observation led to the development of the BioText literature search engine [1], a freely available Web-based application that allows biologists to search over the contents of Open Access Journals, and see figures from the articles displayed directly in the search results. This article presents a qualitative assessment of this system in the form of a usability study with 20 biologist participants using and commenting on the system. 19 out of 20 participants expressed a desire to use a bioscience literature search engine that displays articles' figures alongside the full text search results. 15 out of 20 participants said they would use a caption search and figure display interface either frequently or sometimes, while 4 said rarely and 1 said undecided. 10 out of 20 participants said they would use a tool for searching the text of tables and their captions either frequently or sometimes, while 7 said they would use it rarely if at all, 2 said they would never use it, and 1 was undecided. This study found evidence, supporting results of an earlier study, that bioscience literature search systems such as PubMed should show figures from articles alongside search results. It also found evidence that full text and captions should be searched along with the article title, metadata, and abstract. Finally, for a subset of users and information needs, allowing for explicit search within captions for figures and tables is a useful function, but it is not entirely clear how to cleanly integrate this within a more general literature search interface. Such a facility supports Open Access publishing efforts, as it requires access to full text of documents and the lifting of restrictions in order to show figures in the search interface
The First Provenance Challenge
The first Provenance Challenge was set up in order to provide a forum for the community to help understand the capabilities of different provenance systems and the expressiveness of their provenance representations. To this end, a Functional Magnetic Resonance Imaging workflow was defined, which participants had to either simulate or run in order to produce some provenance representation, from which a set of identified queries had to be implemented and executed. Sixteen teams responded to the challenge, and submitted their inputs. In this paper, we present the challenge workflow and queries, and summarise the participants contributions
C-ME: A 3D Community-Based, Real-Time Collaboration Tool for Scientific Research and Training
The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members
Preferred Spatial Frequencies for Human Face Processing Are Associated with Optimal Class Discrimination in the Machine
Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance
Nominalization and Alternations in Biomedical Language
Background: This paper presents data on alternations in the argument structure of common domain-specific verbs and their associated verbal nominalizations in the PennBioIE corpus. Alternation is the term in theoretical linguistics for variations in the surface syntactic form of verbs, e.g. the different forms of stimulate in FSH stimulates follicular development and follicular development is stimulated by FSH. The data is used to assess the implications of alternations for biomedical text mining systems and to test the fit of the sublanguage model to biomedical texts. Methodology/Principal Findings: We examined 1,872 tokens of the ten most common domain-specific verbs or their zerorelated nouns in the PennBioIE corpus and labelled them for the presence or absence of three alternations. We then annotated the arguments of 746 tokens of the nominalizations related to these verbs and counted alternations related to the presence or absence of arguments and to the syntactic position of non-absent arguments. We found that alternations are quite common both for verbs and for nominalizations. We also found a previously undescribed alternation involving an adjectival present participle. Conclusions/Significance: We found that even in this semantically restricted domain, alternations are quite common, and alternations involving nominalizations are exceptionally diverse. Nonetheless, the sublanguage model applies to biomedica