239 research outputs found

    Constructing Diabatic States from Adiabatic States: Extending Generalized Mulliken–Hush to Multiple Charge Centers with Boys Localization

    Get PDF
    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken–Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer

    We Can Change the Natural History of Type 2 Diabetes

    Get PDF
    As diabetes develops, we currently waste the first ∌10 years of the natural history. If we found prediabetes and early diabetes when they first presented and treated them more effectively, we could prevent or delay the progression of hyperglycemia and the development of complications. Evidence for this comes from trials where lifestyle change and/or glucose-lowering medications decreased progression from prediabetes to diabetes. After withdrawal of these interventions, there was no “catch-up”—cumulative development of diabetes in the previously treated groups remained less than in control subjects. Moreover, achieving normal glucose levels even transiently during the trials was associated with a substantial reduction in subsequent development of diabetes. These findings indicate that we can change the natural history through routine screening to find prediabetes and early diabetes, combined with management aimed to keep glucose levels as close to normal as possible, without hypoglycemia. We should also test the hypothesis with a randomized controlled trial

    Effect of Progression From Impaired Glucose Tolerance to Diabetes on Cardiovascular Risk Factors and Its Amelioration by Lifestyle and Metformin Intervention: The Diabetes Prevention Program randomized trial by the Diabetes Prevention Program Research Group*

    Get PDF
    OBJECTIVE Although subjects with diabetes have increased risk for cardiovascular disease (CVD), the evolution of this increased risk as pre-diabetic individuals progress to diabetes is not understood. This study examines the longitudinal relationship between selected CVD risk factors (blood pressure, triglycerides, HDL and LDL cholesterol, and LDL peak particle density [PPD]) and glycemia in the three treatment groups of the Diabetes Prevention Program. RESEARCH DESIGN AND METHODS A total of 3,234 participants with impaired glucose tolerance (IGT) were followed for a mean of 3.2 years after randomization to intensive lifestyle intervention (ILS), metformin, or placebo. Using repeated-measures models, adjusted mean levels of risk factors were estimated for an annual change in glycemic status. Tests were also conducted to assess the risk factor trends with improvement or worsening of glycemic status. RESULTS CVD risk factor values and changes from baseline became more unfavorable as glucose tolerance status deteriorated but improved with reversion to normal glucose tolerance (NGT), especially in the ILS intervention group (trend test P < 0.001 for all risk factors except for LDL PPD [P = 0.02] in ILS and HDL cholesterol [P = 0.02] in placebo). Although there were few significant differences in the transition from IGT to diabetes, there were strong relationships between risk factors and continuous measures of glycemia. CONCLUSIONS Progression from IGT to diabetes is associated with mild deterioration, whereas reversion to NGT is associated with improvement in risk factors. Early intervention with ILS, but less so with metformin, in participants at high risk for diabetes improves the cardiovascular risk and glucose tolerance profile simultaneously

    Metabolic syndrome components and their response to lifestyle and metformin interventions are associated with differences in diabetes risk in persons with impaired glucose tolerance

    Get PDF
    AIMS: To determine the association of metabolic syndrome (MetS) and its components with diabetes risk in participants with impaired glucose tolerance (IGT), and whether intervention-related changes in MetS lead to differences in diabetes incidence. METHODS: We used the National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATP III) revised MetS definition at baseline and intervention-related changes of its components to predict incident diabetes using Cox models in 3234 Diabetes Prevention Program (DPP) participants with IGT over an average follow-up of 3.2 years. RESULTS: In an intention-to-treat analysis, the demographic-adjusted hazard ratios (95% confidence interval) for diabetes in those with MetS (vs. no MetS) at baseline were 1.7 (1.3-2.3), 1.7 (1.2-2.3) and 2.0 (1.3-3.0) for placebo, metformin and lifestyle groups, respectively. Higher levels of fasting plasma glucose and triglycerides at baseline were independently associated with increased risk of diabetes. Greater waist circumference (WC) was associated with higher risk in placebo and lifestyle groups, but not in the metformin group. In a multivariate model, favourable changes in WC (placebo and lifestyle) and high-density lipoprotein cholesterol (placebo and metformin) contributed to reduced diabetes risk. CONCLUSIONS: MetS and some of its components are associated with increased diabetes incidence in persons with IGT in a manner that differed according to DPP intervention. After hyperglycaemia, the most predictive factors for diabetes were baseline hypertriglyceridaemia and both baseline and lifestyle-associated changes in WC. Targeting these cardiometabolic risk factors may help to assess the benefits of interventions that reduce diabetes incidence

    Stop Atherosclerosis in Native Diabetics Study (SANDS): Baseline Characteristics of the Randomized Cohort

    Full text link
    Objectives: To present baseline characteristics of American Indians in the Stop Atherosclerosis in Native Diabetics Study (SANDS) and compare them with population-based data from American Indians and other ethnic groups. Design: 499 people with type 2 diabetes ≄ age 40, without known CVD, were recruited for a randomized 3-year trial to evaluate treatment targets for LDL-C (70 vs. 100 mg/dL) and systolic blood pressure (BP) (115 vs. 130 mmHg). Baseline evaluations included physical exam, collection of blood and urine samples, and carotid ultrasound and echocardiographic measures. Results: Mean age was 56 years; 66% were female. Average BMI was 33 kg/m2. Average duration of both hypertension and diabetes was 10 years, average A1c was 8.0 %, and mean LDL-C was 104 mg/dL. Participants in the conventional treatment group had slightly higher systolic BPs than participants in the aggressive treatment group (133 mm Hg vs. 128 mm Hg, p \u3c 0.002). Compared with the population-based cohorts of the Strong Heart Study (SHS), NHANES, and the TRIAD registry, SANDS participants had similar values for lipids, BP, and CRP, as well as degree of obesity, smoking rates, and renal function as indicated by estimated glomerular filtration rate. Conclusions: The baseline characteristics of the SANDS cohort are similar to those of a population-based sample of American Indian diabetic men and women and closely resemble diabetic men and women of other ethnic groups. Results from this study can be used to identify appropriate targets for LDL-C and BP lowering in diabetic American Indians and diabetic patients in other ethnic groups

    Evaluation of in-stent restenosis in the APPROACH trial (assessment on the prevention of progression by Rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history)

    Get PDF
    To determine (1) the medium-term effect of rosiglitazone and glipizide on intra-stent neointima hyperplasia, (2) restenosis pattern as assessed by intra-vascular ultrasound (IVUS) and quantitative coronary angiography (QCA) in patients with T2DM and coronary artery disease. A total of 462 patients with T2DM were randomized to rosiglitazone or glipizide for up to 18 months in the APPROACH trial, and had evaluable baseline and follow-up IVUS examinations. There was no significant difference in the size of plaque behind stent between the rosiglitazone and glipizide groups at 18 months among those treated with a bare metal stent (−5.6 mm3 vs. 1.9 mm3; P = 0.61) or with a drug-eluting stent (12.1 mm3 vs. 5.5 mm3; P = 0.09). Similarly, there was no significant difference in percentage intimal hyperplasia volume between the rosiglitazone and glipizide groups at 18 months among those treated with a bare metal stent (24.1% vs. 19.8%; P = 0.38) or with a drug-eluting stent (9.8% vs. 8.3%; P = 0.57). QCA data (intra-stent late loss, intra-stent diameter stenosis or binary restenosis) were not different between the rosiglitazone and glipizide groups. This study suggests that both rosiglitazone and glipizide have a similar effect on neointimal growth at medium term follow-up, a finding that warrants investigation in dedicated randomized trials

    The CardioMetabolic Health Alliance Working Toward a New Care Model for the Metabolic Syndrome

    Get PDF
    AbstractThe Cardiometabolic Think Tank was convened on June 20, 2014, in Washington, DC, as a “call to action” activity focused on defining new patient care models and approaches to address contemporary issues of cardiometabolic risk and disease. Individual experts representing >20 professional organizations participated in this roundtable discussion. The Think Tank consensus was that the metabolic syndrome (MetS) is a complex pathophysiological state comprised of a cluster of clinically measured and typically unmeasured risk factors, is progressive in its course, and is associated with serious and extensive comorbidity, but tends to be clinically under-recognized. The ideal patient care model for MetS must accurately identify those at risk before MetS develops and must recognize subtypes and stages of MetS to more effectively direct prevention and therapies. This new MetS care model introduces both affirmed and emerging concepts that will require consensus development, validation, and optimization in the future

    Actos Now for the prevention of diabetes (ACT NOW) study

    Get PDF
    Abstract Background Impaired glucose tolerance (IGT) is a prediabetic state. If IGT can be prevented from progressing to overt diabetes, hyperglycemia-related complications can be avoided. The purpose of the present study was to examine whether pioglitazone (ACTOSÂź) can prevent progression of IGT to type 2 diabetes mellitus (T2DM) in a prospective randomized, double blind, placebo controlled trial. Methods/Design 602 IGT subjects were identified with OGTT (2-hour plasma glucose = 140–199 mg/dl). In addition, IGT subjects were required to have FPG = 95–125 mg/dl and at least one other high risk characteristic. Prior to randomization all subjects had measurement of ankle-arm blood pressure, systolic/diastolic blood pressure, HbA1C, lipid profile and a subset had frequently sampled intravenous glucose tolerance test (FSIVGTT), DEXA, and ultrasound determination of carotid intima-media thickness (IMT). Following this, subjects were randomized to receive pioglitazone (45 mg/day) or placebo, and returned every 2–3 months for FPG determination and annually for OGTT. Repeat carotid IMT measurement was performed at 18 months and study end. Recruitment took place over 24 months, and subjects were followed for an additional 24 months. At study end (48 months) or at time of diagnosis of diabetes the OGTT, FSIVGTT, DEXA, carotid IMT, and all other measurements were repeated. Primary endpoint is conversion of IGT to T2DM based upon FPG ≄ 126 or 2-hour PG ≄ 200 mg/dl. Secondary endpoints include whether pioglitazone can: (i) improve glycemic control (ii) enhance insulin sensitivity, (iii) augment beta cell function, (iv) improve risk factors for cardiovascular disease, (v) cause regression/slow progression of carotid IMT, (vi) revert newly diagnosed diabetes to normal glucose tolerance. Conclusion ACT NOW is designed to determine if pioglitazone can prevent/delay progression to diabetes in high risk IGT subjects, and to define the mechanisms (improved insulin sensitivity and/or enhanced beta cell function) via which pioglitazone exerts its beneficial effect on glucose metabolism to prevent/delay onset of T2DM. Trial Registration clinical trials.gov identifier: NCT0022096
    • 

    corecore