54 research outputs found
A Stable Cranial Neural Crest Cell Line from Mouse
Cranial neural crest cells give rise to ectomesenchymal derivatives such as cranial bones, cartilage, smooth
muscle, dentin, as well as melanocytes, corneal endothelial cells, and neurons and glial cells of the peripheral
nervous system. Previous studies have suggested that although multipotent stem-like cells may exist during the
course of cranial neural crest development, they are transient, undergoing lineage restriction early in embryonic
development. We have developed culture conditions that allow cranial neural crest cells to be grown as multipotent
stem-like cells. With these methods, we obtained 2 independent cell lines, O9-1 and i10-1, which were
derived from mass cultures of Wnt1-Cre; R26R-GFP-expressing cells. These cell lines can be propagated and
passaged indefinitely, and can differentiate into osteoblasts, chondrocytes, smooth muscle cells, and glial cells.
Whole-genome expression profiling of O9-1 cells revealed that this line stably expresses stem cell markers (CD44,
Sca-1, and Bmi1) and neural crest markers (AP-2α, Twist1, Sox9, Myc, Ets1, Dlx1, Dlx2, Crabp1, Epha2, and Itgb1).
O9-1 cells are capable of contributing to cranial mesenchymal (osteoblast and smooth muscle) neural crest fates when injected into E13.5 mouse cranial tissue explants and chicken embryos. These results suggest that O9-1 cells represent multipotent mesenchymal cranial neural crest cells. The O9-1 cell line should serve as a useful tool for investigating the molecular properties of differentiating cranial neural crest cells
Tissue Origins and Interactions in the Mammalian Skull Vault
AbstractDuring mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal–parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we show that both sutures are formed at a neural crest–mesoderm interface: the frontal bones are neural crest-derived and the parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest migration pathways using X-gal staining, and mesodermal tracing by DiI labelling, we show that the neural crest–mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural crest–mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification, suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification
Augmentation of BMP Signaling in Cranial Neural Crest Cells Leads to Premature Cranial Sutures Fusion through Endochondral Ossification in Mice
Craniosynostosis is a congenital anomaly characterized by the premature fusion of cranial sutures. Sutures are a critical connective tissue that regulates bone growth; their aberrant fusion results in abnormal shapes of the head and face. The molecular and cellular mechanisms have been investigated for a long time, but knowledge gaps remain between genetic mutations and mechanisms of pathogenesis for craniosynostosis. We previously demonstrated that the augmentation of bone morphogenetic protein (BMP) signaling through constitutively active BMP type 1A receptor (caBmpr1a) in neural crest cells (NCCs) caused the development of premature fusion of the anterior frontal suture, leading to craniosynostosis in mice. In this study, we demonstrated that ectopic cartilage forms in sutures prior to premature fusion in caBmpr1a mice. The ectopic cartilage is subsequently replaced by bone nodules leading to premature fusion with similar but unique fusion patterns between two neural crest‐specific transgenic Cre mouse lines, P0‐Cre and Wnt1‐Cre mice, which coincides with patterns of premature fusion in each line. Histologic and molecular analyses suggest that endochondral ossification in the affected sutures. Both in vitro and in vivo observations suggest a greater chondrogenic capacity and reduced osteogenic capability of neural crest progenitor cells in mutant lines. These results suggest that the augmentation of BMP signaling alters the cell fate of cranial NCCs toward a chondrogenic lineage to prompt endochondral ossification to prematurely fuse cranial sutures. By comparing P0‐Cre;caBmpr1a and Wnt1‐Cre;caBmpr1a mice at the stage of neural crest formation, we found more cell death of cranial NCCs in P0‐Cre;caBmpr1a than Wnt1‐Cre;caBmpr1a mice at the developing facial primordia. These findings may provide a platform for understanding why mutations of broadly expressed genes result in the premature fusion of limited sutures. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research
Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration
In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life1, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge2 are regulated by the surrounding microenvironment, or niche3. The activation of such stem cells is cyclic, involving periodic -catenin activity4, 5, 6, 7. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin
Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium
<p>Abstract</p> <p>Background</p> <p><it>Msx1 </it>and <it>Msx2</it>, which belong to the highly conserved <it>Nk </it>family of homeobox genes, display overlapping expression patterns and redundant functions in multiple tissues and organs during vertebrate development. <it>Msx1 </it>and <it>Msx2 </it>have well-documented roles in mediating epithelial-mesenchymal interactions during organogenesis. Given that both <it>Msx1 </it>and <it>Msx2 </it>are crucial downstream effectors of Bmp signaling, we investigated whether <it>Msx1 </it>and <it>Msx2 </it>are required for the Bmp-induced endothelial-mesenchymal transformation (EMT) during atrioventricular (AV) valve formation.</p> <p>Results</p> <p>While both <it>Msx1-/- </it>and <it>Msx2-/- </it>single homozygous mutant mice exhibited normal valve formation, we observed hypoplastic AV cushions and malformed AV valves in <it>Msx1-/-; Msx2-/- </it>mutants, indicating redundant functions of <it>Msx1 </it>and <it>Msx2 </it>during AV valve morphogenesis. In <it>Msx1/2 </it>null mutant AV cushions, we found decreased Bmp2/4 and <it>Notch1 </it>signaling as well as reduced expression of <it>Has2</it>, <it>NFATc1 </it>and <it>Notch1</it>, demonstrating impaired endocardial activation and EMT. Moreover, perturbed expression of chamber-specific genes <it>Anf</it>, <it>Tbx2</it>, <it>Hand1 </it>and <it>Hand2 </it>reveals mispatterning of the <it>Msx1/2 </it>double mutant myocardium and suggests functions of <it>Msx1 </it>and <it>Msx2 </it>in regulating myocardial signals required for remodelling AV valves and maintaining an undifferentiated state of the AV myocardium.</p> <p>Conclusion</p> <p>Our findings demonstrate redundant roles of <it>Msx1 </it>and <it>Msx2 </it>in regulating signals required for development of the AV myocardium and formation of the AV valves.</p
Cryptococcus neoformans Capsular Enlargement and Cellular Gigantism during Galleria mellonella Infection
We have studied infection of Cryptococcus neoformans in the non-vertebrate host Galleria mellonella with particular interest in the morphological response of the yeast. Inoculation of C. neoformans in caterpillars induced a capsule-independent increase in haemocyte density 2 h after infection. C. neoformans manifested a significant increase in capsule size after inoculation into the caterpillar. The magnitude of capsule increase depended on the temperature, being more pronounced at 37°C than at 30°C, which correlated with an increased virulence of the fungus and reduced phagocytosis at 37°C. Capsule enlargement impaired phagocytosis by haemocytes. Incubation of the yeast in G. mellonella extracts also resulted in capsule enlargement, with the polar lipidic fraction having a prominent role in this effect. During infection, the capsule decreased in permeability. A low proportion of the cells (<5%) recovered from caterpillars measured more than 30 µm and were considered giant cells. Giant cells recovered from mice were able to kill the caterpillars in a manner similar to regular cells obtained from in vivo or grown in vitro, establishing their capacity to cause disease. Our results indicate that the morphological transitions exhibited by C. neoformans in mammals also occur in a non-vertebrate host system. The similarities in morphological transitions observed in different animal hosts and in their triggers are consistent with the hypothesis that the cell body and capsular responses represent an adaptation of environmental survival strategies to pathogenesis
Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells
<p>Abstract</p> <p>Background</p> <p>All mucosal epithelia, including those of the tubotympanium, are secreting a variety of antimicrobial innate immune molecules (AIIMs). In our previous study, we showed the bactericidal/bacteriostatic functions of AIIMs against various otitis media pathogens. Among the AIIMs, human β-defensin 2 is the most potent molecule and is inducible by exposure to inflammatory stimuli such as bacterial components or proinflammatory cytokines. Even though the β-defensin 2 is an important AIIM, the induction mechanism of this molecule has not been clearly established. We believe that this report is the first attempt to elucidate NTHi induced β-defensin expression in airway mucosa, which includes the middle ear.</p> <p>Methods</p> <p>Monoclonal antibody blocking method was employed in monitoring the TLR-dependent NTHi response. Two gene knock down methods – dominant negative (DN) plasmid and small interfering RNA (siRNA) – were employed to detect and confirm the involvement of several key genes in the signaling cascade resulting from the NTHi stimulated β-defensin 2 expression in human middle ear epithelial cell (HMEEC-1). The student's <it>t</it>-test was used for the statistical analysis of the data.</p> <p>Results</p> <p>The experimental results showed that the major NTHi-specific receptor in HMEEC-1 is the Toll-like receptor 2 (TLR2). Furthermore, recognition of NTHi component(s)/ligand(s) by TLR2, activated the Toll/IL-1 receptor (TIR)-MyD88-IRAK1-TRAF6-MKK3/6-p38 MAPK signal transduction pathway, ultimately leading to the induction of β-defensin 2.</p> <p>Conclusion</p> <p>This study found that the induction of β-defensin 2 is highest in whole cell lysate (WCL) preparations of NTHi, suggesting that the ligand(s) responsible for this up-regulation may be soluble macromolecule(s). We also found that this induction takes place through the TLR2 dependent MyD88-IRAK1-TRAF6-p38 MAPK pathway, with the primary response occurring within the first hour of stimulation. In combination with our previous studies showing that IL-1α-induced β-defensin 2 expression takes place through a MyD88-independent Raf-MEK1/2-ERK MAPK pathway, we found that both signaling cascades act synergistically to up-regulate β-defensin 2 levels. We propose that this confers an essential evolutionary advantage to the cells in coping with infections and may serve to amplify the innate immune response through paracrine signaling.</p
Advances in the treatment of prolactinomas
Prolactinomas account for approximately 40% of all pituitary adenomas and are an important cause of hypogonadism and infertility. The ultimate goal of therapy for prolactinomas is restoration or achievement of eugonadism through the normalization of hyperprolactinemia and control of tumor mass. Medical therapy with dopamine agonists is highly effective in the majority of cases and represents the mainstay of therapy. Recent data indicating successful withdrawal of these agents in a subset of patients challenge the previously held concept that medical therapy is a lifelong requirement. Complicated situations, such as those encountered in resistance to dopamine agonists, pregnancy, and giant or malignant prolactinomas, may require multimodal therapy involving surgery, radiotherapy, or both. Progress in elucidating the mechanisms underlying the pathogenesis of prolactinomas may enable future development of novel molecular therapies for treatment-resistant cases. This review provides a critical analysis of the efficacy and safety of the various modes of therapy available for the treatment of patients with prolactinomas with an emphasis on challenging situations, a discussion of the data regarding withdrawal of medical therapy, and a foreshadowing of novel approaches to therapy that may become available in the future
L'interaction de Twist1 et Tcf12 est critique pour le développement de la suture coronale chez l'humain et la souris
Une craniosynostose est une pathologie caractérisée par la fusion prématurée d'une ou plusieurs sutures crâniennes. C'est un défaut de naissance assez fréquent (1/2500 naissances) qui résulte en une forme anormale du crâne et qui peut être accompagné d'une déficience mentale dans certains cas. Des mutations du gène TWIST1, qui encode un facteur de transcription basique Helix-Loop-Helix (bHLH) de classe II, causent le syndrome de Saethre-Chotzen qui est associé à une synostose de la suture coronale (El Ghouzzi et al. 1997; Howard et al. 1997). Un nouveau gène a récemment été découvert comme étant une nouvelle cause du syndrome Saethre-Chotzen ainsi que de synostose coronale asyndromique (Sharma, Fenwick, Brockop, et al., 2013): il s'agit du gène TCF12, qui encode un facteur de transcription bHLH de classe I.Nous démontrons qu'une reduction de l'expression génique de Twist1 et Tcf12 chez la souris cause une synostose coronale, et nous suggérons que les protéines bHLH Twist1 et Tcf12 forment des hétérodimères dont le dosage est critique pour le développement de la suture coronale.Nous nous concentrons aussi sur Twist1 et prouvons que son expression est requise dans les tissus dérivant du mésoderme ainsi que ceux dérivant des crêtes neurales pour le développement normal de la suture coronale.De plus, nous notons que dans la suture coronale, Twist1 exclut Notch2 afin de garder la suture ouverte, et beta-catenin joue un rôle dans la maintenance de l'ouverture de la suture en ciblant Jagged1 lors du développement de la suture coronale chez la souris.Enfin, nous mentionnons de nouveaux gènes qui pourraient avoir un impact sur le développement normal de la suture coronale: Aggrecan, Goosecoid, Gucy1a3 et Gucy1b3.Craniosynostosis, the premature fusion of one or more cranial sutures, is a common birth defect (1/2500 live births) that results in abnormalities in skull shape and sometimes in neurological deficiencies (Wilkie, 1997; Wilkie and Morriss-Kay, 2001). Mutations in TWIST1, which encodes a class II basic helix-loop-helix (bHLH) transcription factor, cause Saethre-Chotzen syndrome, associated with coronal synostosis (El Ghouzzi et al. 1997; Howard et al. 1997). We recently discovered a new craniosynostosis gene, TCF12, which encodes a class I bHLH transcription factor. Tcf12 causes.Saethre-Chotzen syndrome and asyndromic coronal synostosis. (Sharma, Fenwick, Brockop, et al., 2013). We show that a reduction in the dosage of Twist1 and Tcf12 in mouse causes coronal synostosis, and we suggest that the Twist1 and Tcf12 form heterodimers whose dosage is critical for coronal suture development. We also demonstrate that Twist1 is required in both neural-crest and mesoderm-derived tissues for the normal coronal suture development. Moreover, we show that in the coronal suture, Twist1 excludes Notch2 thus maintaining suture patency. and we show that beta-catenin also plays a role in the maintenance of suture patency by regulating Jagged1. Finally, we identified Aggrecan, Goosecoid, Gucy1a3 and Gucy1b3 as Twist1-regulated genes that could have an impact on the normal development of the coronal suture.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
- …