295 research outputs found
Incidence of Leukemia, Lymphoma, and Multiple Myeloma in Czech Uranium Miners: A CaseâCohort Study
OBJECTIVE: Uranium miners are chronically exposed to low levels of radon and its progeny. We investigated whether radon exposure is associated with increased incidence of leukemia, lymphoma, or multiple myeloma in this population. DESIGN: We conducted a retrospective caseâcohort study in 23,043 uranium miners and identified a total of 177 incident cases of leukemia, lymphoma, and myeloma. Detailed information on occupational radon exposure was obtained for the cases and a randomly selected subcohort of 2,393 subjects. We used the proportional hazards model with power relative risk (RR) function to estimate and test the effects of cumulative radon exposures on incidence rates. RESULTS: Incidence of all leukemia combined and chronic lymphocytic leukemia (CLL) alone was positively associated with cumulative radon exposure. The RR comparing high radon exposure [110 working level months (WLM); 80th percentile] to low radon exposure (3 WLM; 20th percentile) was 1.75 [95% confidence interval (CI), 1.10â2.78; p = 0.014] for all leukemia combined and 1.98 (95% CI, 1.10â3.59; p = 0.016) for CLL. Myeloid leukemia and Hodgkin lymphoma were also associated with radon, but RRs were not statistically significant. There was no apparent association of radon with either non-Hodgkin lymphoma or multiple myeloma. Exposure to radon and its progeny was associated with an increased risk of developing leukemia in underground uranium miners. CLL, not previously believed to be radiogenic, was linked to radon exposure
Evaluating markers of epithelial-mesenchymal transition to identify cancer patients at risk for metastatic disease
Most cancer deaths are due to metastases. Markers of epithelial-mesenchymal transition (EMT) measured in primary tumor cancer cells could be helpful to assess patient risk of metastatic disease, even among those otherwise diagnosed with local disease. Previous studies of EMT markers and patient outcomes used inconsistent methods and did not compare the clinical impact of different expression cut points for the same marker. Using digital image analysis, we measured the EMT markers Snail and E-cadherin in primary tumor specimens from 190 subjects in tissue microarrays from a population-based prospective cohort of colorectal cancer patients and estimated their associations with time-to-death. After measuring continuous marker expression data, we performed a systematic search for the cut point for each marker with the best model fit between dichotomous marker expression and time-to-death. We also assessed the potential clinical impact of different cut points for the same marker. After dichotomizing expression status at the statistically-optimal cut point, we found that Snail expression was not associated with time-to-death. When measured as a weighted average of tumor cores, low E-cadherin expression was associated with a greater risk of dying within 5 years of surgery than high expression (risk difference = 33 %, 95 % confidence interval 3â62 %). Identifying a clinically-optimal cut point for an EMT marker requires trade-offs between strength and precision of the association with patient outcomes, as well as consideration of the number of patients whose treatments might change based on using the marker at a given cut point
IGF2R Genetic Variants, Circulating IGF2 Concentrations and Colon Cancer Risk in African Americans and Whites
The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9â5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2
Estimating the Cost of No-Shows and Evaluating the Effects of Mitigation Strategies
To measure the cost of non-attendance (âno-showsâ) and benefit of overbooking and interventions to reduce no-shows for an outpatient endoscopy suite
Association Between Affective-Cognitive Symptoms of Depression and Exacerbation of Crohnâs Disease
The prevalence of depression is high in patients with Crohnâs Disease (CD). We examined the influence of affective-cognitive symptoms of depression on the risk of exacerbation of CD
Determinants of Medical System Delay in the Diagnosis of Colorectal Cancer Within the Veteran Affairs Health System
The goals of this study were to evaluate determinants of the time in the medical system until a colorectal cancer diagnosis and to explore characteristics associated with stage at diagnosis
Impact of the 2008â2009 Economic Recession on Screening Colonoscopy Utilization Among the Insured
Economic factors might affect the use of recommended preventative services. We sought to determine whether the recent, severe economic recession was associated with diminished screening colonoscopy rates among an insured population and to assess the relationship between out-of-pocket (OOP) costs and screening colonoscopy use
Assessment of Serum Proteomics to Detect Large Colon Adenomas
A non-invasive blood test that could reliably detect early CRC or large adenomas would provide an important advance in colon cancer screening. The purpose of this study was to determine whether a serum proteomics assay could discriminate among persons with and without a large (â„1cm) colon adenoma. To avoid problems of âbiasâ that have affected many studies about molecular markers for diagnosis, specimens were obtained from a previously-conducted study of CRC etiology in which bloods had been collected before the presence or absence of neoplasm had been determined by colonoscopy, helping to assure that biases related to differences in sample collection and handling would be avoided. Mass spectra of 65 unblinded serum samples were acquired using a nano-electrospray ionization source on a QSTAR-XL mass spectrometer. Classification patterns were developed using the ProteomeQuestÂź algorithm, performing measurements twice on each specimen, and then applied to a blinded validation set of 70 specimens. After removing 33 specimens that had discordant results, the âtest groupâ comprised 37 specimens that had never been used in training. Although in the primary analysis no discrimination was found, a single post-hoc analysis, done after hemolyzed specimens had been removed, showed sensitivity of 78%, specificity of 53%, and an accuracy of 63% (95% CI: 53% to 72%). The results of this study, although preliminary, suggest that further study of serum proteomics, in a larger number of appropriate specimens, could be useful. They also highlight the importance of understanding sources of ânoiseâ and âbiasâ in studies of proteomics assays
Haploinsufficiency of SIRT1 Enhances Glutamine Metabolism and Promotes Cancer Development
SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, plays a vital role in the regulation of metabolism, stress responses, and genome stability. However, the role of SIRT1 in the multi-step process leading to transformation and/or tumorigenesis, as either a tumor suppressor or tumor promoter, is complex and maybe dependent upon the context in which SIRT1 activity is altered, and the role of SIRT1 in tumor metabolism is unknown. Here we demonstrate that SIRT1 dose-dependently regulates cellular glutamine metabolism and apoptosis, which in turn differentially impact cell proliferation and cancer development. Heterozygous deletion of Sirt1 induces c-Myc expression, enhancing glutamine metabolism and subsequent proliferation, autophagy, stress resistance and cancer formation. In contrast, homozygous deletion of Sirt1 triggers cellular apoptotic pathways, increases cell death, diminishes autophagy, and reduces cancer formation. Consistent with the observed dose-dependence in cells, intestine-specific Sirt1 heterozygous mice have enhanced intestinal tumor formation, whereas intestine-specific Sirt1 homozygous knockout mice have reduced development of colon cancer. Furthermore, SIRT1 reduction but not deletion is associated with human colorectal tumors, and colorectal cancer patients with low protein expression of SIRT1 have a poor prognosis. Taken together, our findings indicate that the dose-dependent regulation of tumor metabolism and possibly apoptosis by SIRT1 mechanistically contributes to the observed dual roles of SIRT1 in tumorigenesis. Our study highlights the importance of maintenance of a suitable SIRT1 dosage for metabolic and tissue homeostasis, which will have important implications in SIRT1 small molecule activators/inhibitors based therapeutic strategies for cancers
- âŠ