653 research outputs found
A case of autoinjection of vaseline under penis skin
peer reviewedNous rapportons le cas d’un patient de 24 ans, d’origine
roumaine, se présentant aux urgences pour douleur du
gland et phimosis serré et prétendant avoir subi une injection
sous cutanée pénienne de vaseline. Nous proposons une revue
de la littérature consacrée aux différentes pratiques non
médicales d’implantation ou d’injection de matériel étranger
sous la peau du pénis afin d’en augmenter la taill
Toward an improved design of the in-situ observing system for ocean reanalysis, analysis and forecasting: design of experiments
This report presents the work plan within the task 1.3 - Observing System Design Studie
A reduced-order strategy for 4D-Var data assimilation
This paper presents a reduced-order approach for four-dimensional variational
data assimilation, based on a prior EO F analysis of a model trajectory. This
method implies two main advantages: a natural model-based definition of a mul
tivariate background error covariance matrix , and an important
decrease of the computational burden o f the method, due to the drastic
reduction of the dimension of the control space. % An illustration of the
feasibility and the effectiveness of this method is given in the academic
framework of twin experiments for a model of the equatorial Pacific ocean. It
is shown that the multivariate aspect of brings additional
information which substantially improves the identification procedure. Moreover
the computational cost can be decreased by one order of magnitude with regard
to the full-space 4D-Var method
A new in-silico method for determination of helical transmembrane domains based on the PepLook scan: application to IL-2Rβ and IL-2Rγc receptor chains
BACKGROUND: Modeling of transmembrane domains (TMDs) requires correct prediction of interfacial residues for in-silico modeling and membrane insertion studies. This implies the defining of a target sequence long enough to contain interfacial residues. However, too long sequences induce artifactual polymorphism: within tested modeling methods, the longer the target sequence, the more variable the secondary structure, as though the procedure were stopped before the end of the calculation (which may in fact be unreachable). Moreover, delimitation of these TMDs can produce variable results with sequence based two-dimensional prediction methods, especially for sequences showing polymorphism. To solve this problem, we developed a new modeling procedure using the PepLook method. We scanned the sequences by modeling peptides from the target sequence with a window of 19 residues. RESULTS: Using sequences whose NMR-structures are already known (GpA, EphA1 and Erb2-HER2), we first determined that the hydrophobic to hydrophilic accessible surface area ratio (ASAr) was the best criterion for delimiting the TMD sequence. The length of the helical structure and the Impala method further supported the determination of the TMD limits. This method was applied to the IL-2Rbeta and IL-2Rgamma TMD sequences of Homo sapiens, Rattus norvegicus, Mus musculus and Bos taurus. CONCLUSIONS: We succeeded in reducing the variation in the TMD limits to only 2 residues and in gaining structural information
Attempt to identify sources of atmospheric methane and carbon dioxide concentrations found in in situ aircraft measurements over Southern Australia
De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development
Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD
ExpandNet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content
© 2018 The Author(s) and 2018 The Eurographics Association and John Wiley & Sons Ltd. High dynamic range (HDR) imaging provides the capability of handling real world lighting as opposed to the traditional low dynamic range (LDR) which struggles to accurately represent images with higher dynamic range. However, most imaging content is still available only in LDR. This paper presents a method for generating HDR content from LDR content based on deep Convolutional Neural Networks (CNNs) termed ExpandNet. ExpandNet accepts LDR images as input and generates images with an expanded range in an end-to-end fashion. The model attempts to reconstruct missing information that was lost from the original signal due to quantization, clipping, tone mapping or gamma correction. The added information is reconstructed from learned features, as the network is trained in a supervised fashion using a dataset of HDR images. The approach is fully automatic and data driven; it does not require any heuristics or human expertise. ExpandNet uses a multiscale architecture which avoids the use of upsampling layers to improve image quality. The method performs well compared to expansion/inverse tone mapping operators quantitatively on multiple metrics, even for badly exposed inputs
In-situ observations using tagged animals
Marine mammals help gather information on some of the harshest environments on the planet, through the use of miniaturized ocean sensors glued on their fur. Since 2004, hundreds of diving marine animals, mainly Antarctic and Arctic seals, have been fitted with a new generation of Argos tags developed by the Sea Mammal Research Unit of the University of St Andrews in Scotland, UK. These tags investigate the at-sea ecology of these animals while simultaneously collecting valuable oceanographic data. Some of the study species travel thousands of kilometres continuously diving to great depths (up to 2100 m). The resulting data are now freely available to the global scientific community at http://www.meop.net. Despite great progress in their reliability and data accuracy, the current generation of loggers while approaching standard ARGO quality specifications have yet to match them. Yet, improvements are underway; they involve updating the technology, implementing a more systematic phase of calibration and taking benefit of the recently acquired knowledge on the dynamical response of sensors. Together these efforts are rapidly transforming animal tagging into one of the most important sources of oceanographic data in polar regions and in many coastal areas.Publisher PDFNon peer reviewe
Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling
BACKGROUND: Lipocalins are widely distributed in nature and are found in bacteria, plants, arthropoda and vertebra. In hematophagous arthropods, they are implicated in the successful accomplishment of the blood meal, interfering with platelet aggregation, blood coagulation and inflammation and in the transmission of disease parasites such as Trypanosoma cruzi and Borrelia burgdorferi. The pairwise sequence identity is low among this family, often below 30%, despite a well conserved tertiary structure. Under the 30% identity threshold, alignment methods do not correctly assign and align proteins. The only safe way to assign a sequence to that family is by experimental determination. However, these procedures are long and costly and cannot always be applied. A way to circumvent the experimental approach is sequence and structure analyze. To further help in that task, the residues implicated in the stabilisation of the lipocalin fold were determined. This was done by analyzing the conserved interactions for ten lipocalins having a maximum pairwise identity of 28% and various functions. RESULTS: It was determined that two hydrophobic clusters of residues are conserved by analysing the ten lipocalin structures and sequences. One cluster is internal to the barrel, involving all strands and the 310 helix. The other is external, involving four strands and the helix lying parallel to the barrel surface. These clusters are also present in RaHBP2, a unusual "outlier" lipocalin from tick Rhipicephalus appendiculatus. This information was used to assess assignment of LIR2 a protein from Ixodes ricinus and to build a 3D model that helps to predict function. FTIR data support the lipocalin fold for this protein. CONCLUSION: By sequence and structural analyzes, two conserved clusters of hydrophobic residues in interactions have been identified in lipocalins. Since the residues implicated are not conserved for function, they should provide the minimal subset necessary to confer the lipocalin fold. This information has been used to assign LIR2 to lipocalins and to investigate its structure/function relationship. This study could be applied to other protein families with low pairwise similarity, such as the structurally related fatty acid binding proteins or avidins.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Designing the climate observing system of the future
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 6 (2018): 80–102, doi:10.1002/2017EF000627.Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs
- …
