3,123 research outputs found

    Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing

    Get PDF
    Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process

    Using an Ultraviolet Light Test to Improve Sagebrush Identification and Predict Forage Quality for Wildlife

    Get PDF
    Sagebrush identification can be improved by using a relatively easy ultraviolet (UV) light test on specimens. Sagebrush produces a variety of water-soluble polyphenols called coumarins, which fluoresce a blue color under UV light and can help differentiate species, subspecies, and hybrids. We tested 16 different sagebrush taxa (including species and subspecies) from herbarium specimens and found 3 taxa (low sagebrush, Artemisia arbuscula; Wyoming sagebrush, A. tridentata wyomingensis; and basin sagebrush, A. t. tridentata) that were often misidentified. We show that the UV light test can greatly improve identification of these species. Moreover, given that the UV+ chemicals that discriminate taxa are also considered an indirect biomarker of sagebrush palatability for some herbivores, the UV light test can be used to predict forage quality for threatened species like sage-grouse (Centrocercus spp.) and pygmy rabbits (Brachylagus idahoensis). Collecting voucher specimens of sagebrush at wildlife study sites and comparing their UV intensity to historical herbarium specimens could help identify both current and changing availability of palatable sagebrush for wildlife. We found that even herbarium specimens \u3e80 years old still fluoresce under UV light

    Photometric Monitoring of the Gravitationally Lensed Ultraluminous BAL Quasar APM08279+5255

    Full text link
    We report on one year of photometric monitoring of the ultraluminous BAL quasar APM 08279+5255. The temporal sampling reveals that this gravitationally lensed system has brightened by ~0.2 mag in 100 days. Two potential causes present themselves; either the variability is intrinsic to the quasar, or it is the result of microlensing by stars in a foreground system. The data is consistent with both hypotheses and further monitoring is required before either case can be conclusively confirmed. We demonstrate, however, that gravitational microlensing can not play a dominant role in explaining the phenomenal properties exhibited by APM 08279+5255. The identification of intrinsic variability, coupled with the simple gravitational lensing configuration, would suggest that APM 08279+5255 is a potential golden lens from which the cosmological parameters can be derived and is worthy of a monitoring program at high spatial resolution.Comment: 17 pages, with 2 figures. Accepted for publication in P.A.S.

    Biochar's cost constraints are overcome in small‐scale farming in tropical soils in lower‐income countries

    Get PDF
    Biochar has been lauded for its potential to mitigate climate change, increase crop yields and reverse land degradation in tropical agricultural systems. Despite its benefits, confusion persists about whether the use of biochar is financially feasible as a soil ameliorant. A comprehensive review of previous studies of biochar's financial feasibility was performed (33 relevant publications). Financial performance appraisal (USMg‐1biochar)andgreenhousegasabatementcostestimates(US Mg‐1 biochar) and greenhouse gas abatement cost estimates (US Mg‐1 CO2e) were used to gauge the financial feasibility of the biochar scenarios within each publication. Ordinary Least Squares Multiple Linear Regression was used to evaluate the predictive capacity of scenario financial feasibility as dependent on variables including national income levels, climatic conditions, pyrolysis technology scales and pyrolysis capabilities. Analysis revealed that scenarios where biochar was applied targeting yield increases in high‐value crops in tropical locations with low incomes and biochar‐focused small‐scale production, were overall significant predictors of biochar scenario financial feasibility. We find that the average abatement cost of biochar applied in ‘lower‐income countries' is ‐US58Mg‐1CO2e(financiallyfeasible)comparedwith+US58 Mg‐1 CO2e (financially feasible) compared with +US93 Mg‐1 CO2e in ‘higher‐income countries' (not financially feasible). Climate policies of lower‐income countries in tropical climates should consider biochar as an input for small‐scale climate smart agriculture to address land degradation in tropical agricultural systems. Based on recent evidence it is suggested that biochar fertilizers, a value‐added biochar product, could present a commercially feasible pathway for biochar value‐chain development in higher‐income countries

    Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis

    Get PDF
    Citation: He, C. L., Lin, Z., Robb, S. W., & Ezeamama, A. E. (2015). Serum Vitamin D Levels and Polycystic Ovary syndrome: A Systematic Review and Meta-Analysis. Nutrients, 7(6), 4555-4577. doi:10.3390/nu7064555Vitamin D deficiency (VDD) is common in women with and without polycystic ovary syndrome (PCOS) and may be associated with metabolic and endocrine disorders in PCOS. The aim of this meta-analysis is to assess the associations of serum vitamin D levels with metabolic and endocrine dysregulations in women with PCOS, and to determine effects of vitamin D supplementation on metabolic and hormonal functions in PCOS patients. The literature search was undertaken through five databases until 16 January 2015 for both observational and experimental studies concerning relationships between vitamin D and PCOS. A total of 366 citations were identified, of which 30 were selected (n = 3182). We found that lower serum vitamin D levels were related to metabolic and hormonal disorders in women with PCOS. Specifically, PCOS patients with VDD were more likely to have dysglycemia (e.g., increased levels of fasting glucose and homeostatic model assessment-insulin resistance index (HOMA-IR)) compared to those without VDD. This meta-analysis found no evidence that vitamin D supplementation reduced or mitigated metabolic and hormonal dysregulations in PCOS. VDD may be a comorbid manifestation of PCOS or a minor pathway in PCOS associated metabolic and hormonal dysregulation. Future prospective observational studies and randomized controlled trials with repeated VDD assessment and better characterization of PCOS disease severity at enrollment are needed to clarify whether VDD is a co-determinant of hormonal and metabolic dysregulations in PCOS, represents a consequence of hormonal and metabolic dysregulations in PCOS or both

    Graphene plasmonics : ultra-tunable graphene light source

    Get PDF
    Free-electron-based light sources have long attracted interest due to their continuous tunability that has been demonstrated to extend across the electromagnetic spectrum from millimetre waves and microwaves through the infrared and visible to ultraviolet and X-ray regions. However this intrinsic tunability, particularly at short wavelengths, usually involves sources that are large and costly. The prospect of a compact, continuously tunable light source with the capability to generate short-wavelength ultraviolet and even X-ray light is an exciting one for many scientific, medical and engineering applications

    Firefly Flashing is Controlled by Gating Oxygen to Light-Emitting Cells

    Get PDF
    Although many aspects of firefly bioluminescence are understood, the mechanism by which adult fireflies produce light as discrete rapid flashes is not. Here we examine the most postulated theory, that flashing is controlled by gating oxygen access to the light-emitting cells (photocytes). According to this theory, the dark state represents repression of bioluminescence by limiting oxygen, which is required for bioluminescence; relief from this repression by transiently allowing oxygen access to the photocytes allows the flash. We show that normobaric hyperoxia releases the repression of light emission in the dark state of both spontaneously flashing and non-flashing fireflies, causing continual glowing, and we measure the kinetics of this process. Secondly, we determine the length of the barriers to oxygen diffusion to the photocytes in the aqueous and gas phases. Thirdly, we provide constraints upon the distance between any gas-phase gating structure(s) and the photocytes. We conclude from these data that the flash of the adult firefly is controlled by gating of oxygen to the photocytes, and demonstrate that this control mechanism is likely to act by modulating the levels of fluid in the tracheoles supplying photocytes, providing a variable barrier to oxygen diffusion

    A perpetual switching system in pulmonary capillaries

    Get PDF
    Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics

    Sequential superradiant scattering from atomic Bose-Einstein condensates

    Full text link
    We theoretically discuss several aspects of sequential superradiant scattering from atomic Bose-Einstein condensates. Our treatment is based on the semiclassical description of the process in terms of the Maxwell-Schroedinger equations for the coupled matter-wave and optical fields. First, we investigate sequential scattering in the weak-pulse regime and work out the essential mechanisms responsible for bringing about the characteristic fan-shaped side-mode distribution patterns. Second, we discuss the transition between the Kapitza-Dirac and Bragg regimes of sequential scattering in the strong-pulse regime. Finally, we consider the situation where superradiance is initiated by coherently populating an atomic side mode through Bragg diffraction, as in studies of matter-wave amplification, and describe the effect on the sequential scattering process.Comment: 9 pages, 4 figures. Submitted to Proceedings of LPHYS'06 worksho
    • 

    corecore