823 research outputs found
Usability Testing: Open GeoPortal 2.0
The PLACE project team at the University of New Hampshire Library performed usability testing on May 9, 2014 with three participants with GIS experience. Tasks focused on use of Open GeoPortal 2.0 (beta)
Infrared-Faint Radio Sources are at high redshifts
Context: Infrared-Faint Radio Sources (IFRS) are characterised by relatively
high radio flux densities and associated faint or even absent infrared and
optical counterparts. The resulting extremely high radio-to-infrared flux
density ratios up to several thousands were previously known only for
High-redshift Radio Galaxies (HzRGs), suggesting a link between the two classes
of object. Prior to this work, no redshift was known for any IFRS in the
Australia Telescope Large Area Survey (ATLAS) fields which would help to put
IFRS in the context of other classes of object, especially of HzRGs. Aims: This
work aims at measuring the first redshifts of IFRS in the ATLAS fields.
Further, we test the hypothesis that IFRS are similar to HzRGs, as
higher-redshift or dust-obscured versions of these massive galaxies. Methods: A
sample of IFRS was spectroscopically observed using the Focal Reducer and Low
Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data
were calibrated based on the Image Reduction and Analysis Facility (IRAF) and
redshifts extracted. This information was then used to calculate rest-frame
luminosities, and to perform the first spectral energy distribution modelling
of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and
2.76, for three IFRS, confirming the suggested high-redshift character of this
class of object. These redshifts as well as the resulting luminosities show
IFRS to be similar to HzRGs. We found further evidence that fainter IFRS are at
even higher redshifts. Conclusions: Considering the similarities between IFRS
and HzRGs substantiated in this work, the detection of IFRS, which have a
significantly higher sky density than HzRGs, increases the number of Active
Galactic Nuclei in the early universe and adds to the problems of explaining
the formation of supermassive black holes shortly after the Big Bang.Comment: 7 pages, 4 figures; version in prin
Measuring glucose content in the aqueous humor
Many diabetics must measure their blood glucose levels regularly to maintain good health. In principle, one way of measuring the glucose concentration in the human body would be by measuring optically the glucose content of the aqueous humor in the eye. Lein Applied Diagnostics wish to assess whether this is feasible by a linear confocal scan with an LED source, or by supplementing such a system with other measurements
Durrington Walls to West Amesbury by way of Stonehenge: a major transformation of the Holocene landscape
A new sequence of Holocene landscape change has been discovered through an investigation of sediment sequences, palaeosols, pollen and molluscan data discovered during the Stonehenge Riverside Project. The early post-glacial vegetational succession in the Avon valley at Durrington Walls was apparently slow and partial, with intermittent woodland modification and the opening-up of this landscape in the later Mesolithic and earlier Neolithic, though a strong element of pine lingered into the third millennium BC. There appears to have been a major hiatus around 2900 cal BC, coincident with the beginnings of demonstrable human activities at Durrington Walls, but slightly after activity started at Stonehenge. This was reflected in episodic increases in channel sedimentation and tree and shrub clearance, leading to a more open downland, with greater indications of anthropogenic activity, and an increasingly wet floodplain with sedges and alder along the river’s edge. Nonetheless, a localized woodland cover remained in the vicinity of DurringtonWalls throughout the third and second millennia BC, perhaps on the higher parts of the downs, while stable grassland, with rendzina soils, predominated on the downland slopes, and alder–hazel carr woodland and sedges continued to fringe the wet floodplain. This evidence is strongly indicative of a stable and managed landscape in Neolithic and Bronze Age times. It is not until c 800–500 cal BC that this landscape was completely cleared, except for the marshy-sedge fringe of the floodplain, and that colluvial sedimentation began in earnest associated with increased arable agriculture, a situation that continued through Roman and historic times
Luminous and Dark Matter in the Milky Way
(Abridged) Axisymmetric models of the Milky Way exhibit strong interrelations
between the Galactic constants (R_0 and T_0), the stellar columndensity (S_*)
and the shape of the dark matter (DM) halo. Here we present analytical
relations that can be used to investigate the effects of the uncertain gaseous
velocity dispersion on the HI flaring constraints. The contribution of cosmic
rays and magnetic fields to the pressure gradients is small. A significantly
flattened dark matter halo is only possible if R_0 <~ 6.8 kpc.
If R_0 is larger than ~7 kpc, or T_0 >~ 170 km/s, we can rule out two DM
candidates that require a highly flattened DM halo: 1) decaying massive
neutrinos; and 2) a disk of cold molecular hydrogen.
It is only possible to construct self-consistent models of the Galaxy based
on the IAU-recommended values for the Galactic constants in the unlikely case
that the the stellar columndensity is smaller than ~18 M_sun/pc^2. If we assume
that the halo is oblate and S_* = 35 +/- 5 M_sun/pc^2, R_0 <~ 8 kpc and T_0 <~
200 km/s.
Combining the best kinematical and star-count estimates of S_*, we conclude
that: 25 <~ S_* <~ 45 M_sun/pc^2. Kuijken & Gilmore's (1991) determination of
the columndensity of matter with |z|<=1.1 kpc is robust and valid over a wide
range of Galactic constants.
Our mass models show that the DM density in the Galactic centre is uncertain
by a factor 1000. In the Solar neighbourhood we find: rho_DM ~0.42 GeV/c^2/cm^3
or (11 +/- 5) mM_sun/pc^3 -- roughly 15% of rho_tot.Comment: Accepted for publication in MNRA
Carbon dioxide and ocean acidification observations in UK waters. Synthesis report with a focus on 2010–2015
Key messages: 1.1 The process of ocean acidification is now relatively well-documented at the global scale as a long-term trend in the open ocean. However, short-term and spatial variability can be high. 1.2 New datasets made available since Charting Progress 2 make it possible to greatly improve the characterisation of CO2 and ocean acidification in UK waters. 3.1 Recent UK cruise data contribute to large gaps in national and global datasets. 3.2 The new UK measurements confirm that pH is highly variable, therefore it is important to measure consistently to determine any long term trends. 3.3 Over the past 30 years, North Sea pH has decreased at 0.0035±0.0014 pH units per year. 3.4 Upper ocean pH values are highest in spring, lowest in autumn. These changes reflect the seasonal cycles in photosynthesis, respiration (decomposition) and water mixing. 3.5 Carbonate saturation states are minimal in the winter, and lower in 7 more northerly, colder waters. This temperature-dependence could have implications for future warming of the seas. 3.6 Over the annual cycle, North-west European seas are net sinks of CO2. However, during late summer to autumn months, some coastal waters may be significant sources. 3.7 In seasonally-stratified waters, sea-floor organisms naturally experience lower pH and saturation states; they may therefore be more vulnerable to threshold changes. 3.8 Large pH changes (0.5 - 1.0 units) can occur in the top 1 cm of sediment; however, such effects are not well-documented. 3.9 A coupled forecast model estimates the decrease in pH trend within the North Sea to be -0.0036±0.00034 pH units per year, under a high greenhouse gas emissions scenario (RCP 8.5). 3.10 Seasonal estimates from the forecast model demonstrate areas of the North Sea that are particularly vulnerable to aragonite undersaturation
Inverse modeling of CH4 emissions for 2010 - 2011 using different satellite retrieval products from GOSAT and SCIAMACHY
Beginning in 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer (TANSO-FTS) instrument onboard the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent CH4 measurements were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument onboard ENVISAT. The GOSAT and SCIAMACHY XCH4 retrievals can be directly compared during their circa 32-month period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modeling system. Additionally, high-accuracy measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) global air sampling network are used, providing strong constraints of the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON) / Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. 2-year average emission maps show a good overall agreement among all GOSAT-based inversions, but also compared to the SCIAMACHY-based inversion, with consistent flux adjustment patterns, particularly across Equatorial Africa and North America. The inversions are validated against independent shipboard and aircraft observations, and XCH4 measurements available from the Total Carbon Column Observing Network (TCCON). All GOSAT and SCIAMACHY inversions show very similar validation performance.JRC.H.2-Air and Climat
Gristhorpe Man: an Early Bronze Age log-coffin burial scientifically defined
© 2010 Antiquity PublicationsA log-coffin excavated in the early nineteenth century proved to be well enough preserved in the early twenty-first century for the fill armoury of modern scientific investigation to give its occupants and contents new identity, new origins and a new date. In many ways the interpretation is much the same as before: a local big man buried looking out to sea. Modern analytical techniques can create a person more real, more human and more securely anchored in history. This research team shows how.The project has been funded by grants from the British Academy, British Association for
the Advancement of Science, Natural Environment Research Council, Royal Archaeological
Institute and Scarborough Museums Trust. CJK’s participation in this project was funded
by a Leverhulme Research Fellowship (RF/6/RFG/2008/0253)
- …
