141 research outputs found

    Diagnostic value of far-IR water ice features in T Tauri disks

    Get PDF
    This paper investigates how the far-IR water ice features can be used to infer properties of disks around T Tauri stars and the water ice thermal history. We explore the power of future observations with SOFIA/HIRMES and SPICA's proposed far-IR instrument SAFARI. A series of detailed radiative transfer disk models around a representative T Tauri star are used to investigate how the far-IR water ice features at 45 and 63 micron change with key disk properties: disk size, grain sizes, disk dust mass, dust settling, and ice thickness. In addition, a series of models is devised to calculate the water ice emission features from warmup, direct deposit and cooldown scenarios of the water ice in disks. Photodesorption from icy grains in disk surfaces weakens the mid-IR water ice features by factors 4-5. The far-IR water ice emission features originate from small grains at the surface snow line in disks at distance of 10-100 au. Unless this reservoir is missing in disks (e.g. transitional disks with large cavities), the feature strength is not changing. Grains larger than 10 micron do not contribute to the features. Grain settling (using turbulent description) is affecting the strength of the ice features by at most 15%. The strength of the ice feature scales with the disk dust mass and water ice fraction on the grains, but saturates for dust masses larger than 1.e-4 Msun and for ice mantles that increase the dust mass by more than 50%. The various thermal histories of water ice leave an imprint on the shape of the features (crystalline/amorphous) as well as on the peak strength and position of the 45 micron feature. SOFIA/HIRMES can only detect crystalline ice features much stronger than simulated in our standard T Tauri disk model in deep exposures (1 hr). SPICA/SAFARI can detect the typical ice features in our standard T Tauri disk model in short exposures (10 min). (abbreviated)Comment: accepted for publication in A&

    New member candidates of Upper Scorpius from Gaia DR1

    Full text link
    Context. Selecting a cluster in proper motion space is an established method for identifying members of a star forming region. The first data release from Gaia (DR1) provides an extremely large and precise stellar catalogue, which when combined with the Tycho-2 catalogue gives the 2.5 million parallaxes and proper motions contained within the Tycho-Gaia Astrometric Solution (TGAS). Aims. We aim to identify new member candidates of the nearby Upper Scorpius subgroup of the Scorpius-Centaurus Complex within the TGAS catalogue. In doing so, we also aim to validate the use of the DBSCAN clustering algorithm on spatial and kinematic data as a robust member selection method. Methods. We constructed a method for member selection using a density-based clustering algorithm (DBSCAN) applied over proper motion and distance. We then applied this method to Upper Scorpius, and evaluated the results and performance of the method. Results. We identified 167 member candidates of Upper Scorpius, of which 78 are new, distributed within a 10^{\circ} radius from its core. These member candidates have a mean distance of 145.6 ±\pm 7.5 pc, and a mean proper motion of (-11.4, -23.5) ±\pm (0.7, 0.4) mas/yr. These values are consistent with measured distances and proper motions of previously identified bona-fide members of the Upper Scorpius association.Comment: 8 pages, 9 figures and 1 table. Accepted for publication in Astronomy and Astrophysic

    A Herschel view of IC 1396 A: Unveiling the different sequences of star formation

    Get PDF
    The IC1396A globule in the young cluster Tr37, hosting many young stars and protostars, is assumed to be a site of triggered star formation. We mapped IC1396A with Herschel/PACS at 70 and 160 micron. The Herschel maps trace in great detail the very embedded protostellar objects and the structure of the cloud. PACS data reveal a previously unknown Class 0 object (IC1396A-PACS-1) located behind the ionization front. IC1396A-PACS-1 is not detectable with Spitzer, but shows marginal X-ray emission. The data also allowed to study three of the Class I intermediate-mass objects within the cloud. We derived approximate cloud temperatures to study the effect and potential interactions between the protostars and the cloud. The Class 0 object is associated with the densest and colder part of IC1396A. Heating in the cloud is dominated by the winds and radiation of the O6.5 star HD 206267 and, to a lesser extent, by the effects of the Herbig Ae star V 390 Cep. The surroundings of the Class I and Class II objects embedded in the cloud also appear warmer than the sourceless areas, although most of the low-mass objects cannot be individually extracted due to distance and beam dilution. The observations suggest that at least two episodes of star formation have occurred in IC1396A. One would have originated the known, ~1 Myr-old Class I and II objects in the cloud, and a new wave of star formation would have produced the Class 0 source at the tip of the brigth-rimmed cloud. From its location and properties, IC1396A-PACS-1 is consistent with triggering via radiative driven implosion (RDI) induced by HD 206267. The mechanisms behind the formation of the more evolved population of Class I/II/III objects in the cloud are uncertain. Heating of most of the remaining cloud by Class I/Class II objects and by HD 206267 itself may preclude further star formation in the region.Comment: Accepted by A&A, 9 pages, 5 figure

    Magnetic activity and accretion on FU Tau A: Clues from variability

    Full text link
    FU Tau A is a young very low mass object in the Taurus star forming region which was previously found to have strong X-ray emission and to be anomalously bright for its spectral type. In this study we discuss these characteristics using new information from quasi-simultaneous photometric and spectroscopic monitoring. From photometric time series obtained with the 2.2m telescope on Calar Alto we measure a period of ~4d for FU Tau A, most likely the rotation period. The short-term variations over a few days are consistent with the rotational modulation of the flux by cool, magnetically induced spots. In contrast, the photometric variability on timescales of weeks and years can only be explained by the presence of hot spots, presumably caused by accretion. The hot spot properties are thus variable on timescales exceeding the rotation period, maybe due to long-term changes in the accretion rate or geometry. The new constraints from the analysis of the variability confirm that FU Tau A is affected by magnetically induced spots and excess luminosity from accretion. However, accretion is not sufficient to explain its anomalous position in the HR diagram. In addition, suppressed convection due to magnetic activity and/or an early evolutionary stage need to be invoked to fully account for the observed properties. These factors cause considerable problems in estimating the mass of FU Tau A and other objects in this mass/age regime, to the extent that it appears questionable if it is feasible to derive the Initial Mass Function for young low-mass stars and brown dwarfs.Comment: 10 pages, 7 figures, accepted for publication in MNRAS, 'Note added in proof' include

    Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs

    Get PDF
    At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, OH, and H2_{2}O) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. The atomic and molecular FIR (60-190 μm\rm \mu m) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&

    The Transiting Exocomets in the HD 172555 System

    Get PDF
    The Earth is thought to have formed dry, in a part of the Solar Nebula deficient in organic material, and to have acquired its organics and water through bombardment by minor bodies. Observations of this process in well-dated systems can provide insight into the probable origin and composition of the bombarding parent bodies. Transiting cometary activity has previously been reported in Ca II for the late-A member of the 241 Myr old Pictoris Moving Group member, HD 172555(Kiefer et al. 2014). We present HST STIS and COS spectra of HD 172555 demonstrating that the star has chromospheric emission and variable in falling gas features in transitions of silicon and carbon ions at times when no Fe II absorption is seen in the UV data, and no Ca II absorption is seen in contemporary optical spectra. The lack of CO absorption and stable gas absorption at the system velocity is consistent with the absence of a cold Kuiper belt analog (Riviere-Marichalar et al. 2012) in this system. The presence of infall in some species at one epoch and others at different epochs suggests that, like Pictoris, there may be more than one family of exocomets. If perturbed into star-grazing orbits by the same mechanism as for Pic, these data suggest that the wide planet frequency among A-early F stars in the PMG is at least 37.5, well above the frequency estimated for young moving groups independent of host star spectral type

    Infrared study of transitional disks in Ophiuchus with Herschel

    Full text link
    Context. Observations of nearby star-forming regions with the Herschel Space Observatory complement our view of the protoplanetary disks in Ophiuchus with information about the outer disks. Aims. The main goal of this project is to provide new far-infrared fluxes for the known disks in the core region of Ophiuchus and to identify potential transitional disks using data from Herschel. Methods. We obtained PACS and SPIRE photometry of previously spectroscopically confirmed young stellar objects (YSO) in the region and analysed their spectral energy distributions. Results. From an initial sample of 261 objects with spectral types in Ophiuchus, we detect 49 disks in at least one Herschel band. We provide new far-infrared fluxes for these objects. One of them is clearly a new transitional disk candidate. Conclusions. The data from Herschel Space Observatory provides fluxes that complement previous infrared data and that we use to identify a new transitional disk candidate.Comment: 21 pages, with 5 figures. Accepted in Astronomy & Astrophysic
    corecore