12 research outputs found
Evaluation of sesamum gum as an excipient in matrix tablets
In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated
Preparation and characterization of microcapsules of Pterodon pubescens Benth. by using natural polymers
An oleaginous fraction obtained from an alcohol extract of the fruit of Pterodon pubescensBenth. (FHPp) was microencapsulated in polymeric systems. These systems were developed using a complex coacervation method and consisted of alginate/medium-molecular-weight chitosan (F1-MC), alginate/chitosan with greater than 75% deacetylation (F2-MC), and alginate/low-molecular-weight chitosan (F3-MC). These developed systems have the potential to both mask the taste of the extract, and to protect its constituents against possible chemical degradation. The influence of the formulation parameters and process were determined by chemical profiling and measurement of the microencapsulation efficiency of the oleaginous fraction, and by assessment of microcapsule morphology. The obtained formulations were slightly yellow, odorless, and had a pleasant taste. The average diameters of the microcapsules were 0.4679 µm (F2-MC), 0.5885 µm (F3-MC), and 0.9033 µm (F1-MC). The best formulation was F3-MC, with FHPp microencapsulation efficiency of 61.01 ± 2.00% and an in vitro release profile of 75.88 ± 0.45%; the content of vouacapans 3-4 was 99.49 ± 2.80%. The best model to describe the release kinetics for F1-MC and F3-MC was that proposed by Higuchi; however, F2-MC release displayed first-order kinetics; the release mechanism was of the supercase II type for all formulations
Floating ability and drug release evaluation of gastroretentive microparticles system containing metronidazole obtained by spray drying
Abstract Gastroretentive floating microparticles were developed and evaluated for the controlled metronidazole delivery for treatment of gastric disease. Floating microparticles, varying in proportions of chitosan and hydroxypropyl methylcellulose or ethylcellulose, were obtained by spray drying. Floating microparticles were characterized by physicochemical and in vitro studies, according to their floating ability and drug delivery. Microparticles presented mean diameter from 1.05 to 2.20 µm. The infrared spectroscopy confirmed the drug encapsulation and showed no chemical linkage between microparticles components. X-ray diffraction showed changes in the drug`s solid state, from crystalline to amorphous, indicating partial drug encapsulation, due to the presence of some crystalline peaks of metronidazole in microparticles. All microparticles floated immediately in contact of simulated gastric fluid and both floating and drug release profiles were dependent of microparticles composition. Microparticles samples constituted by chitosan and hydroxypropyl methylcellulose revealed the best relationship between floating duration and drug release, remaining floating during the occurrence of the drug release, ideal condition for the floating gastroretentive systems
Formulation of a modified release metformin. HCl matrix tablet: influence of some hydrophilic polymers on release rate and in-vitro evaluation
Metformin hydrochloride is an antidiabetic agent which improves glucose tolerance in patients with type 2 diabetes and reduces basal plasma levels of glucose. In this study, a simplex centroid experimental design with 69 runs was used to select the best combination of some hydrophilic polymers that rendered a 24 h in-vitro release profile of metformin.HCl. The Korsmeyer-Peppas model was used to model the dissolution profiles since it presented the best fit to the experimental data. Further, a cubic model predicted the best formulation of metformin.HCl containing polyvinyl pyrrolidone, ethyl cellulose, hydroxypropyl methyl cellulose, carrageenan, sodium alginate, and gum arabic at 6.26, 68.7, 6.26, 6.26, 6.26 and 6.26 % levels, respectively. The validation runs confirmed the accuracy of the cubic model with six components for predicting the best set of components which rendered a once-a-day modified release hydrophilic matrix tablet in compliance with the USP specifications.<br>O cloridrato de metformina é um agente antidiabético que melhora a tolerância à glicose em pacientes com diabetes tipo 2 e reduz os níveis plasmáticos basais de glicose. Neste estudo, um projeto experimental do tipo "centróide simplex" com 69 tomadas foi usado para selecionar a melhor combinação de alguns polímeros hidrofílicos que gerou um perfil de liberação da metformina.HCl de 24 horas. O modelo Korsmeyer-Peppas foi usado para modelar os perfis de dissolução, uma vez que apresentou os melhores ajustes aos dados experimentais. Além disso, um modelo cúbico previu a melhor formulação de metformina.HCl sendo aquela contendo polivinilpirrolidona, etilcelulose, hidroxipropilmetil celulose, carragena, alginato de sódio e goma arábica nos níveis 6.26, 68.7, 6.26, 6.26, 6.26 e 6.26 %, respectivamente. As corridas de validação confirmaram a precisão do modelo cúbico com os seis componentes para prever o melhor conjunto de componentes que originou uma libertação do tipo "uma vez ao dia" em conformidade com as especificações da USP, a partir de comprimidos matriciais