1,229 research outputs found

    Liberty University in Time and Memory

    Get PDF

    Miraculous Organ : Shakespeare and ‘Catharsis’

    No full text
    Peer reviewedPublisher PD

    Photon-Mediated Interaction between Two Distant Atoms

    Full text link
    We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between the radiative lifetime of the atomic excited state and the propagation time of a photon between the two atoms. In the two regimes, well below saturation the dynamics exhibit either typical features of a bad resonator, where the atoms act as the mirrors, or typical characteristics of dipole-dipole interaction. We study the coherence properties of the emitted light and show that it carries signatures of the multiple scattering processes between the atoms. The model predictions are compared with the experimental results in J. Eschner {\it et al.}, Nature {\bf 413}, 495 (2001).Comment: 18 pages, 15 figure

    Collisional excitation of doubly and triply deuterated ammonia ND2_2H and ND3_3 by H2_2

    Get PDF
    The availability of collisional rate coefficients is a prerequisite for an accurate interpretation of astrophysical observations, since the observed media often harbour densities where molecules are populated under non--LTE conditions. In the current study, we present calculations of rate coefficients suitable to describe the various spin isomers of multiply deuterated ammonia, namely the ND2_2H and ND3_3 isotopologues. These calculations are based on the most accurate NH3_3--H2_2 potential energy surface available, which has been modified to describe the geometrical changes induced by the nuclear substitutions. The dynamical calculations are performed within the close--coupling formalism and are carried out in order to provide rate coefficients up to a temperature of TT = 50K. For the various isotopologues/symmetries, we provide rate coefficients for the energy levels below \sim 100 cm1^{-1}. Subsequently, these new rate coefficients are used in astrophysical models aimed at reproducing the NH2_2D, ND2_2H and ND3_3 observations previously reported towards the prestellar cores B1b and 16293E. We thus update the estimates of the corresponding column densities and find a reasonable agreement with the previous models. In particular, the ortho--to--para ratios of NH2_2D and NHD2_2 are found to be consistent with the statistical ratios

    Transition Delay Using Biomimetic Fish Scale Arrays

    Get PDF
    Aquatic animals have developed effective strategies to reduce their body drag over a long period of time. In this work, the influence of the scales of fish on the laminar-to-turbulent transition in the boundary layer is investigated. Arrays of biomimetic fish scales in typical overlapping arrangements are placed on a flat plate in a low-turbulence laminar water channel. Transition to turbulence is triggered by controlled excitation of a Tollmien-Schlichting (TS) wave. It was found that the TS wave can be attenuated with scales on the plate which generate streamwise streaks. As a consequence, the transition location was substantially delayed in the downstream direction by 55% with respect to the uncontrolled reference case. This corresponds to a theoretical drag reduction of about 27%. We thus hypothesize that fish scales can stabilize the laminar boundary layer and prevent it from early transition, reducing friction drag. This technique can possibly be used for bio-inspired surfaces as a laminar flow control means

    Modelling the molecular composition and nuclear-spin chemistryof collapsing pre-stellar sources★

    Get PDF
    We study the gravitational collapse of pre-stellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3 , and of the hydrides of carbon, nitrogen, oxygen, and sulphur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H +3 + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the pre-stellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes – as assumed in our gas-phase network – and direct nucleus- or atom-exchange reactions
    corecore