1,229 research outputs found
Photon-Mediated Interaction between Two Distant Atoms
We study the photonic interactions between two distant atoms which are
coupled by an optical element (a lens or an optical fiber) focussing part of
their emitted radiation onto each other. Two regimes are distinguished
depending on the ratio between the radiative lifetime of the atomic excited
state and the propagation time of a photon between the two atoms. In the two
regimes, well below saturation the dynamics exhibit either typical features of
a bad resonator, where the atoms act as the mirrors, or typical characteristics
of dipole-dipole interaction. We study the coherence properties of the emitted
light and show that it carries signatures of the multiple scattering processes
between the atoms. The model predictions are compared with the experimental
results in J. Eschner {\it et al.}, Nature {\bf 413}, 495 (2001).Comment: 18 pages, 15 figure
Collisional excitation of doubly and triply deuterated ammonia NDH and ND by H
The availability of collisional rate coefficients is a prerequisite for an
accurate interpretation of astrophysical observations, since the observed media
often harbour densities where molecules are populated under non--LTE
conditions. In the current study, we present calculations of rate coefficients
suitable to describe the various spin isomers of multiply deuterated ammonia,
namely the NDH and ND isotopologues. These calculations are based on
the most accurate NH--H potential energy surface available, which has
been modified to describe the geometrical changes induced by the nuclear
substitutions. The dynamical calculations are performed within the
close--coupling formalism and are carried out in order to provide rate
coefficients up to a temperature of = 50K. For the various
isotopologues/symmetries, we provide rate coefficients for the energy levels
below 100 cm. Subsequently, these new rate coefficients are used
in astrophysical models aimed at reproducing the NHD, NDH and ND
observations previously reported towards the prestellar cores B1b and 16293E.
We thus update the estimates of the corresponding column densities and find a
reasonable agreement with the previous models. In particular, the
ortho--to--para ratios of NHD and NHD are found to be consistent with
the statistical ratios
Transition Delay Using Biomimetic Fish Scale Arrays
Aquatic animals have developed effective strategies to reduce their body drag over a long period of time. In this work, the influence of the scales of fish on the laminar-to-turbulent transition in the boundary layer is investigated. Arrays of biomimetic fish scales in typical overlapping arrangements are placed on a flat plate in a low-turbulence laminar water channel. Transition to turbulence is triggered by controlled excitation of a Tollmien-Schlichting (TS) wave. It was found that the TS wave can be attenuated with scales on the plate which generate streamwise streaks. As a consequence, the transition location was substantially delayed in the downstream direction by 55% with respect to the uncontrolled reference case. This corresponds to a theoretical drag reduction of about 27%. We thus hypothesize that fish scales can stabilize the laminar boundary layer and prevent it from early transition, reducing friction drag. This technique can possibly be used for bio-inspired surfaces as a laminar flow control means
Modelling the molecular composition and nuclear-spin chemistryof collapsing pre-stellar sources★
We study the gravitational collapse of pre-stellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3 , and of the hydrides of carbon, nitrogen, oxygen, and sulphur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H +3 + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the pre-stellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes – as assumed in our gas-phase network – and direct nucleus- or atom-exchange reactions
- …