46 research outputs found

    Convenient Shorthand: The Supreme Court and the Language of State Sovereignty

    Get PDF
    A symposium on the health significance of dietary fat in the prevention and treatment of the metabolic syndrome (MetS) was held at the 20th International Congress of Nutrition in Granada, Spain, on September 19, 2013. Four nutrition experts addressed the topics of dietary fat and obesity, effects of dietary fat quality in obesity and insulin resistance, influence of early nutrition on the later risk of MetS and the relative merits of high- or low-fat diets in counteracting MetS. Participants agreed that preventing weight gain and achieving weight loss in overweight and obese patients were key strategies for reducing MetS. Both low-fat and low-carbohydrate diets are associated with weight loss, but adherence to the diet is the most important factor in achieving success. Avoidance of high saturated fats contributes to lower health risks among obese, MetS and diabetic patients. Further, healthy maternal weight at conception and in pregnancy is more important that weight gain during pregnancy for reducing the risk of obesity in the offspring. The effects of different polyunsaturated fatty acids on MetS and weight loss require clarification. (C) 2014 S. Karger AG, Base

    A hypocaloric diet rich in high fiber rye foods causes greater reduction in body weight and body fat than a diet rich in refined wheat: A parallel randomized controlled trial in adults with overweight and obesity (the RyeWeight study)

    Get PDF
    Background and aim: A high intake of whole grain foods is inversely associated with body mass index (BMI) and body fat in observational studies, but mixed results have been found in interventional studies. Among whole grains, rye is the richest source of dietary fiber and meals containing high-fiber rye foods have shown increased satiety up to 8 h, compared to meals containing refined wheat products. The aim of the study was to determine the effect of consuming high fiber rye products, compared to refined wheat products, on body weight and body fat loss in the context of an energy restricted diet.Methods: After a 2-week run-in period, 242 males and females with overweight or obesity (BMI 27-35 kg/m(2)), aged 30-70 years, were randomized (1:1) to consume high fiber rye products or refined wheat products for 12 weeks, while adhering to a hypocaloric diet. At week 0, week 6 and week 12 body weight and body composition (dual energy x-ray absorptiometry) was measured and fasting blood samples were collected. Subjective appetite was evaluated for 14 h at week 0, 6 and 12.Results: After 12 weeks the participants in the rye group had lost 1.08 kg body weight and 0.54% body fat more than the wheat group (95% confidence interval (CI): 0.36; 1.80, p < 0.01 and 0.05; 1.03, p 1/4 0.03, respectively). C-reactive protein was 28% lower in the rye vs wheat group after 12 weeks of intervention (CI: 7; 53, p < 0.01). There were no consistent group differences on subjective appetite or on other cardiometabolic risk markers.Conclusion: Consumption of high fiber rye products as part of a hypocaloric diet for 12 weeks caused a greater weight loss and body fat loss, as well as reduction in C-reactive protein, compared to refined wheat. The difference in weight loss could not be linked to differences in appetite response. (C) 2021 The Author(s). Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism

    Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium.

    Get PDF
    BACKGROUND: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment. METHODS: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol. FINDINGS: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7-59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0-20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0-1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6-2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0-1·3 to 2·3, 2·0-2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced. INTERPRETATION: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician-patient communication about primary prevention strategies. FUNDING: EU Framework Programme, UK Medical Research Council, and German Centre for Cardiovascular Research

    PUFA omega-3 and omega-6 biomarkers and sleep : a pooled analysis of cohort studies on behalf of the Fatty Acids and Outcomes Research Consortium (FORCE)

    Get PDF
    Background: n-3 and n-6 PUFAs have physiologic roles in sleep processes. but little is known regarding circulating n-3 and n-6 PUFA and sleep parameters. Objectives: We sought to assess associations between biomarkers of n-3 and n-6 PUFA intake with self-reported sleep duration and difficulty falling sleeping in the Fatty Acids and Outcome Research Consortium. Methods: Harmonized, de novo. individual-level analyses were performed and pooled across 12 cohorts. Participants were 35-96 y old and from 5 nations. Circulating measures included alpha-linolenic acid (ALA), EPA, docosapentaenoic acid (DPA), DHA, EPA + DPA DHA, linoleic acid, and arachidonic acid. Sleep duration (10 cohorts. n = 18.791) was categorized as short (= 9 h). Difficulty falling asleep (8 cohorts, n = 12,500) was categorized as yes or no. Associations between PUFAs, sleep duration, and difficulty falling sleeping were assessed by cross-sectional multinomial logistic regression using standardized protocols and covariates. Cohort-specific multivariable-adjusted ORs per quintile of PUFAs were pooled with inverse-variance weighted meta-analysis. Results: In pooled analysis adjusted for sociodemographic characteristics and health status, participants with higher very long-chain n-3 PUFAs were less likely to have long sleep duration. In the top compared with the bottom quintiles. the multivariable-adjusted ORs (95% CIs) for long sleep were 0.78 (95% CI: 0.65, 0.95) for DHA and 0.76 (95% CI: 0.63, 0.93) for EPA + DPA + DHA. Significant associations for ALA and n-6 PUFA with short sleep duration or difficulty falling sleeping were not identified. Conclusions: Participants with higher concentrations of very long-chain n-3 PUFAs were less likely to have long sleep duration. While objective biomarkers reduce recall bias and misclassification, the cross-sectional design limits assessment of the temporal nature of this relation. These novel findings across 12 cohorts highlight the need for experimental and biological assessments of very long-chain n-3 PUFAs and sleep duration.Peer reviewe

    Fatty Acid Biomarkers of Dairy Fat Consumption and Incidence of Type 2 Diabetes: A Pooled Analysis of Prospective Cohort Studies

    Get PDF
    Background We aimed to investigate prospective associations of circulating or adipose tissue odd-chain fatty acids 15:0 and 17:0 and trans-palmitoleic acid, t16:1n-7, as potential biomarkers of dairy fat intake, with incident type 2 diabetes (T2D). Methods and findings Sixteen prospective cohorts from 12 countries (7 from the United States, 7 from Europe, 1 from Australia, 1 from Taiwan) performed new harmonised individual-level analysis for the prospective associations according to a standardised plan. In total, 63,682 participants with a broad range of baseline ages and BMIs and 15,180 incident cases of T2D over the average of 9 years of follow-up were evaluated. Study-specific results were pooled using inverse-variance±weighted meta-analysis. Prespecified interactions by age, sex, BMI, and race/ethnicity were explored in each cohort and were meta-analysed. Potential heterogeneity by cohort-specific characteristics (regions, lipid compartments used for fatty acid assays) was assessed with metaregression. After adjustment for potential confounders, including measures of adiposity (BMI, waist circumference) and lipogenesis (levels of palmitate, triglycerides), higher levels of 15:0, 17:0, and t16:1n-7 were associated with lower incidence of T2D. In the most adjusted model, the hazard ratio (95% CI) for incident T2D per cohortspecific 10th to 90th percentile range of 15:0 was 0.80 (0.73±0.87); of 17:0, 0.65 (0.59± 0.72); of t16:1n7, 0.82 (0.70±0.96); and of their sum, 0.71 (0.63±0.79). In exploratory analyses, similar associations for 15:0, 17:0, and the sum of all three fatty acids were present in both genders but stronger in women than in men (pinteraction \u3c 0.001). Whereas studying associations with biomarkers has several advantages, as limitations, the biomarkers do not distinguish between different food sources of dairy fat (e.g., cheese, yogurt, milk), and residual confounding by unmeasured or imprecisely measured confounders may exist. Conclusions In a large meta-analysis that pooled the findings from 16 prospective cohort studies, higher levels of 15:0, 17:0, and t16:1n-7 were associated with a lower risk of T2D

    Omega-6 Fatty Acid Biomarkers and Incident Type 2 Diabetes: Pooled Analysis of Individual-Level Data for 39 740 Adults from 20 Prospective Cohort Studies

    Get PDF
    Background: The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with incident type 2 diabetes. Methods: We did a pooled analysis of new, harmonised, individual-level analyses for the biomarkers linoleic acid and its metabolite arachidonic acid and incident type 2 diabetes. We analysed data from 20 prospective cohort studies from ten countries (Iceland, the Netherlands, the USA, Taiwan, the UK, Germany, Finland, Australia, Sweden, and France), with biomarkers sampled between 1970 and 2010. Participants included in the analyses were aged 18 years or older and had data available for linoleic acid and arachidonic acid biomarkers at baseline. We excluded participants with type 2 diabetes at baseline. The main outcome was the association between omega-6 PUFA biomarkers and incident type 2 diabetes. We assessed the relative risk of type 2 diabetes prospectively for each cohort and lipid compartment separately using a prespecified analytic plan for exposures, covariates, effect modifiers, and analysis, and the findings were then pooled using inverse-variance weighted meta-analysis. Findings: Participants were 39 740 adults, aged (range of cohort means) 49-76 years with a BMI (range of cohort means) of 23·3-28·4 kg/m(2), who did not have type 2 diabetes at baseline. During a follow-up of 366 073 person-years, we identified 4347 cases of incident type 2 diabetes. In multivariable-adjusted pooled analyses, higher proportions of linoleic acid biomarkers as percentages of total fatty acid were associated with a lower risk of type 2 diabetes overall (risk ratio [RR] per interquintile range 0·65, 95% CI 0·60-0·72,

    Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE consortium studies 1-4

    Get PDF
    Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [β = −0.009 mmol/L (95% CI: −0.013, −0.005), P < 0.0001] and insulin [−0.020 ln-pmol/L (95% CI: −0.024, −0.017), P < 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted
    corecore