967 research outputs found
Ultra-luminous X-ray sources and remnants of massive metal-poor stars
Massive metal-poor stars might form massive stellar black holes (BHs), with
mass 25<=mBH/Msun<=80, via direct collapse. We derive the number of massive BHs
(NBH) that are expected to form per galaxy through this mechanism. Such massive
BHs might power most of the observed ultra-luminous X-ray sources (ULXs). We
select a sample of 64 galaxies with X-ray coverage, measurements of the star
formation rate (SFR) and of the metallicity. We find that NBH correlates with
the number of observed ULXs per galaxy (NULX) in this sample. We discuss the
dependence of our model on the SFR and on the metallicity. The SFR is found to
be crucial, consistently with previous studies. The metallicity plays a role in
our model, since a lower metallicity enhances the formation of massive BHs.
Consistently with our model, the data indicate that there might be an
anticorrelation between NULX, normalized to the SFR, and the metallicity. A
larger and more homogeneous sample of metallicity measurements is required, in
order to confirm our results.Comment: 21 pages, 8 figures, accepted for publication in MNRA
Ultra-luminous X-ray sources and remnants of massive metal-poor stars
Massive metal-poor stars might form massive stellar black holes (BHs), with mass 25 ≤mBH/M⊙≤ 80, via direct collapse. We derive the number of massive BHs (NBH) that are expected to form per galaxy through this mechanism. Such massive BHs might power most of the observed ultra-luminous X-ray sources (ULXs). We select a sample of 64 galaxies with X-ray coverage, measurements of the star formation rate (SFR) and of the metallicity. We find that NBH correlates with the number of observed ULXs per galaxy (NULX) in this sample. We discuss the dependence of our model on the SFR and on the metallicity. The SFR is found to be crucial, consistently with previous studies. The metallicity plays a role in our model, since a lower metallicity enhances the formation of massive BHs. Consistently with our model, the data indicate that there might be an anticorrelation between NULX, normalized to the SFR, and the metallicity. A larger and more homogeneous sample of metallicity measurements is required, in order to confirm our result
Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy
Chandra and XMM-Newton observations of the Cartwheel galaxy show ∼17 bright X-ray sources (≳5 × 1038erg s−1), all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting gas or undergoing mass transfer from a stellar companion. To this purpose, we run N-body/smoothed particle hydrodynamics simulations of the galaxy interaction which might have led to the formation of Cartwheel, tracking the dynamical evolution of two different IMBH populations: halo and disc IMBHs. Halo IMBHs cannot account for the observed X-ray sources, as only a few of them cross the outer ring. Instead, more than half of the disc IMBHs are pulled in the outer ring as a consequence of the galaxy collision. However, also in the case of disc IMBHs, accretion from surrounding gas clouds cannot account for the high luminosities of the observed sources. Finally, more than 500 disc IMBHs are required to produce ≲15 X-ray sources via mass transfer from very young stellar companions. Such number of IMBHs is very large and implies extreme assumptions. Thus, the hypothesis that all the observed X-ray sources in Cartwheel are associated with IMBHs is hardly consistent with our simulations, even if it is still possible that IMBHs account for the few (≲1-5) brightest ultraluminous X-ray source
Are ring galaxies the ancestors of giant low surface brightness galaxies?
We simulate the collisional formation of a ring galaxy and we integrate its evolution up to 1.5 Gyr after the interaction. About 100-200 Myr after the collision, the simulated galaxy is very similar to observed ring galaxies (e.g. Cartwheel). After this stage, the ring keeps expanding and fades. Approximately 0.5-1 Gyr after the interaction, the disc becomes very large (∼100 kpc) and flat. Such extended discs have been observed only in giant low surface brightness galaxies (GLSBs). We compare various properties of our simulated galaxies (surface brightness profile, morphology, H i spectrum and rotation curve) with the observations of four well-known GLSBs (UGC 6614, Malin 1, Malin 2 and NGC 7589). The simulations match quite well the observations, suggesting that ring galaxies could be the progenitors of GLSBs. This result is crucial for the cold dark matter (CDM) model, as it was very difficult, so far, to explain the formation of GLSBs within the CDM scenari
Low-Mass Relics of Early Star Formation
The earliest stars to form in the Universe were the first sources of light,
heat and metals after the Big Bang. The products of their evolution will have
had a profound impact on subsequent generations of stars. Recent studies of
primordial star formation have shown that, in the absence of metals (elements
heavier than helium), the formation of stars with masses 100 times that of the
Sun would have been strongly favoured, and that low-mass stars could not have
formed before a minimum level of metal enrichment had been reached. The value
of this minimum level is very uncertain, but is likely to be between 10^{-6}
and 10^{-4} that of the Sun. Here we show that the recent discovery of the most
iron-poor star known indicates the presence of dust in extremely
low-metallicity gas, and that this dust is crucial for the formation of
lower-mass second-generation stars that could survive until today. The dust
provides a pathway for cooling the gas that leads to fragmentation of the
precursor molecular cloud into smaller clumps, which become the lower-mass
stars.Comment: Offprint of Nature 422 (2003), 869-871 (issue 24 April 2003
Dust remobilization in fusion plasmas under steady state conditions
The first combined experimental and theoretical studies of dust
remobilization by plasma forces are reported. The main theoretical aspects of
remobilization in fusion devices under steady state conditions are analyzed. In
particular, the dominant role of adhesive forces is highlighted and generic
remobilization conditions - direct lift-up, sliding, rolling - are formulated.
A novel experimental technique is proposed, based on controlled adhesion of
dust grains on tungsten samples combined with detailed mapping of the dust
deposition profile prior and post plasma exposure. Proof-of-principle
experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are
presented. The versatile environment of the linear device Pilot-PSI allowed for
experiments with different magnetic field topologies and varying plasma
conditions that were complemented with camera observations.Comment: 16 pages, 11 figures, 3 table
Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy
Chandra and XMM-Newton observations of the Cartwheel galaxy show ~17 bright
X-ray sources (>~5x10^38 erg s^-1), all within the gas-rich outer ring. We
explore the hypothesis that these X-ray sources are powered by
intermediate-mass black holes (IMBHs) accreting gas or undergoing mass transfer
from a stellar companion. To this purpose, we run N-body/SPH simulations of the
galaxy interaction which might have led to the formation of Cartwheel, tracking
the dynamical evolution of two different IMBH populations: halo and disc IMBHs.
Halo IMBHs cannot account for the observed X-ray sources, as only a few of them
cross the outer ring. Instead, more than half of the disc IMBHs are pulled in
the outer ring as a consequence of the galaxy collision. However, also in the
case of disc IMBHs, accretion from surrounding gas clouds cannot account for
the high luminosities of the observed sources. Finally, more than 500 disc
IMBHs are required to produce <~15 X-ray sources via mass transfer from very
young stellar companions. Such number of IMBHs is very large and implies
extreme assumptions. Thus, the hypothesis that all the observed X-ray sources
in Cartwheel are associated with IMBHs is hardly consistent with our
simulations, even if it is still possible that IMBHs account for the few
(<~1-5) brightest ultraluminous X-ray sources (ULXs).Comment: 16 pages, 12 figures, MNRAS, in press, higher resolution version at
http://www-theorie.physik.unizh.ch/~mapelli/astroph/cartwheel_ULX2.p
Dynamics of massive stellar black holes in young star clusters and the displacement of ultra-luminous X-ray sources
In low-metallicity environments, massive stars might avoid supernova
explosion and directly collapse, forming massive (~25-80 solar masses) stellar
black holes (MSBHs), at the end of their life. MSBHs, when hosted in young
massive clusters, are expected to form binaries and to strongly interact with
stars, mainly via three-body encounters. We simulate various realizations of
young star clusters hosting MSBHs in hard binaries with massive stars. We show
that a large fraction (~44 per cent) of MSBH binaries are ejected on a short
timescale (<=10 Myr). The offset of the ejected MSBHs with respect to the
parent cluster is consistent with observations of X-ray binaries and
ultra-luminous X-ray sources. Furthermore, three-body encounters change the
properties of MSBH binaries: the semi-major axis changes by <=50 per cent and
the eccentricity of the system generally increases. We shortly discuss the
implications of our simulations on the formation of high-mass X-ray binaries
hosting MSBHs.Comment: 10 pages, 9 figures, accepted for publication in MNRA
Observational Manifestations of the First Protogalaxies in the 21 cm Line
The absorption properties of the first low-mass protogalaxies (mini-halos)
forming at high redshifts in the 21-cm line of atomic hydrogen are considered.
The absorption properties of these protogalaxies are shown to depend strongly
on both their mass and evolutionary status. The optical depths in the line
reach 0.1-0.2 for small impact parameters of the line of sight. When a
protogalaxy being compressed, the influence of gas accretion can be seen
manifested in a non-monotonic frequency dependence of the optical depth. The
absorption characteristics in the 21-cm line are determined by the thermal and
dynamical evolution of the gas in protogalaxies. Since the theoretical line
width in the observer's reference frame is 1-6 kHz and the expected separation
between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved
using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure
<i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis
Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops
- …
