9,827 research outputs found

    Gel Electrophoresis of DNA Knots in Weak and Strong Electric Fields

    Get PDF
    Gel electrophoresis allows to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a simple Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the type of knot and on the electric field intensity was investigated. The results are in qualitative agreement with electrophoretic experiments done under conditions of low and high electric fields: especially the inversion of the behavior from low to high electric field could be reproduced. The knot topology imposes on the problem the constrain of self-avoidance, which is the final cause of the observed behavior in strong electric field.Comment: 17 pages, 5 figure

    On Weyl Quantization from geometric Quantization

    Full text link
    A. Weinstein has conjectured a nice looking formula for a deformed product of functions on a hermitian symmetric space of non-compact type. We derive such a formula for symmetric symplectic spaces using ideas from geometric quantization and prequantization of symplectic groupoids. We compute the result explicitly for the natural 2-dimensional symplectic manifolds: the euclidean plane, the sphere and the hyperbolic plane. For the euclidean plane we obtain the well known Moyal-Weyl product. The other cases show that Weinstein's original idea should be interpreted with care. We conclude with comments on the status of our result.Comment: 11 pages. (v2: corrected a couple of typos

    Naphthalene Adsorption on 13X Molecular Sieve

    Get PDF
    In this paper, naphthalene adsorption on 13X molecular sieve has been investigated. The isotherms and the net heat of adsorption have been determined in the range between 40 °C and 380 °C. Analysis of the results clearly indicates that the Dubinin-Radushkevitch model provides the best fitting equation for data points, with a specific limitation due to some steric hindrance effect

    A Fuzzy Logic based system for Mixed Reality assistance of remote workforce

    Get PDF
    The recent years have witnessed an increase in the use of augmented and virtual reality systems, changing the way we interact with our environments. Such systems are commonly associated with advertising, entertainment, medicine, training and education. However, with the increasing acceptance and availability of mobile and wearable devices (e.g. head-mounted displays (HMD)), the use of these technologies is moving towards professional and industrial environments, where they would be able to support employees in their daily tasks, increasing customer satisfaction and reducing business costs. This paper presents an innovative Mixed Reality (MR) system to assist field workforce in remote locations. As part of the overall implementation, the MR system uses fuzzy logic mechanisms to improve accuracy in user tracking and object monitoring, allowing the correct representation of users and objects in the Graphical User Interfaces (GUIs), and improving the experience for users

    Quantum Monte Carlo study of the Ne atom and the Ne+ ion

    Full text link
    We report all-electron and pseudopotential calculations of the ground-stateenergies of the neutral Ne atom and the Ne+ ion using the variational and diffusion quantum Monte Carlo (DMC) methods. We investigate different levels of Slater-Jastrow trial wave function: (i) using Hartree-Fock orbitals, (ii) using orbitals optimized within a Monte Carlo procedure in the presence of a Jastrow factor, and (iii) including backflow correlations in the wave function. Small reductions in the total energy are obtained by optimizing the orbitals, while more significant reductions are obtained by incorporating backflow correlations. We study the finite-time-step and fixed-node biases in the DMC energy and show that there is a strong tendency for these errors to cancel when the first ionization potential (IP) is calculated. DMC gives highly accurate values for the IP of Ne at all the levels of trial wave function that we have considered

    Furthering Service 4.0: Harnessing Intelligent Immersive Environments and Systems

    Get PDF
    With the increasing complexity of service operations in different industries and more advanced uses of specialized equipment and procedures, the great current challenge for companies is to increase employees' expertise and their ability to maintain and improve service quality. In this regard, Service 4.0 aims to support and promote innovation in service operations using emergent technology. Current technological innovations present a significant opportunity to provide on-site, real-time support for field service professionals in many areas

    Semiclassical Evolution of Dissipative Markovian Systems

    Full text link
    A semiclassical approximation for an evolving density operator, driven by a "closed" hamiltonian operator and "open" markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra "open" term is added to the double Hamiltonian by the non-hermitian part of the Lindblad operators in the general case of dissipative markovian evolution. The particular case of generic hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighborhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further "small-chord" approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.Comment: 33 pages - accepted to J. Phys.
    corecore