7 research outputs found

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group

    Get PDF
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the enigma-anxiety working group

    Get PDF
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group

    No full text
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Cortical and subcortical brain structure in generalized anxiety disorder : findings from 28 research sites in the ENIGMA-Anxiety Working Group

    No full text
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5-90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning

    No full text
    Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain- based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto- striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data

    Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning

    No full text
    Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto-striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data

    Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning

    No full text
    Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto-striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data
    corecore