7 research outputs found
Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder.
Abstract
OBJECTIVE:
To study rituximab in pediatric neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD) and the relationship between rituximab, B cell repopulation, and relapses in order to improve rituximab monitoring and redosing.
METHODS:
Multicenter retrospective study of 16 children with NMO/NMOSD receiving 652 rituximab courses. According to CD19 counts, events during rituximab were categorized as "repopulation," "depletion," or "depletion failure" relapses (repopulation threshold CD19 6510
7 10(6) cells/L).
RESULTS:
The 16 patients (14 girls; mean age 9.6 years, range 1.8-15.3) had a mean of 6.1 events (range 1-11) during a mean follow-up of 6.1 years (range 1.6-13.6) and received a total of 76 rituximab courses (mean 4.7, range 2-9) in 42.6-year cohort treatment. Before rituximab, 62.5% had received azathioprine, mycophenolate mofetil, or cyclophosphamide. Mean time from rituximab to last documented B cell depletion and first repopulation was 4.5 and 6.8 months, respectively, with large interpatient variability. Earliest repopulations occurred with the lowest doses. Significant reduction between pre- and post-rituximab annualized relapse rate (ARR) was observed (p = 0.003). During rituximab, 6 patients were relapse-free, although 21 relapses occurred in 10 patients, including 13 "repopulation," 3 "depletion," and 4 "depletion failure" relapses. Of the 13 "repopulation" relapses, 4 had CD19 10-50
7 10(6) cells/L, 10 had inadequate monitoring ( 641 CD19 in the 4 months before relapses), and 5 had delayed redosing after repopulation detection.
CONCLUSION:
Rituximab is effective in relapse prevention, but B cell repopulation creates a risk of relapse. Redosing before B cell repopulation could reduce the relapse risk further.
CLASSIFICATION OF EVIDENCE:
This study provides Class IV evidence that rituximab significantly reduces ARR in pediatric NMO/NMOSD. This study also demonstrates a relationship between B cell repopulation and relapses
Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis.
Abstract
BACKGROUND:
Recognizing the cause of optic neuritis (ON) affects treatment decisions and visual outcomes.
OBJECTIVE:
We aimed to define radiological features of first-episode demyelinating ON.
METHODS:
We performed blinded radiological assessment of 50 patients presenting with first-episode myelin oligodendrocyte glycoprotein (MOG) antibody-associated ON (MOG-ON; n=19), aquaporin-4 (AQP4) antibody-associated ON (AQP4-ON; n=11), multiple sclerosis (MS)-associated ON (MS-ON; n=13), and unclassified ON (n=7).
RESULTS:
Bilateral involvement was more common in MOG-ON and AQP4-ON than MS-ON (84% vs. 82% vs. 23%), optic nerve head swelling was more common in MOG-ON (53% vs. 9% vs. 0%), chiasmal involvement was more common in AQP4-ON (5% vs. 64% vs. 15%), and bilateral optic tract involvement was more common in AQP4-ON (0% vs. 45% vs. 0%). Retrobulbar involvement was more common in MOG-ON, whereas intracranial involvement was more common in AQP4-ON. MOG-ON and AQP4-ON had longer lesion lengths than MS-ON. The combination of two predictors, the absence of magnetic resonance imaging brain abnormalities and a higher lesion extent score, showed a good ability to discriminate between an autoantibody-associated ON (MOG or AQP4) and MS. AQP4-ON more frequently had severe and sustained visual impairment.
CONCLUSION:
MOG-ON and AQP4-ON are more commonly bilateral and longitudinally extensive. MOG-ON tends to involve the anterior optic pathway, whereas AQP4-ON the posterior optic pathway