311 research outputs found
Effect of low protein diet supplemented with or without amino acids on the production of broiler
Experiment was carried out to investigate the effect of low protein diet supplemented with or without amino acids on the performance of broiler. Hubbard 375 day-old broiler were purchased, initially weighed and randomly divided into five groups (75 broilers in each group). Group A was kept as control given commercial feed, group B further divided into two group B1 and B2 were fed low CP (15 and 16%) ratio supplemented with lysine (1.0%) and methionine (0.5%) , while group C also further divided into group C1 and C2 were fed with the same low CP(15 and 16%) ratio without lysine and methionine supplementation. The experimental ratios were start up from fourth week of the experiment. Feed intake of broiler in group A, B1, B2, C1 and C2 was 3.793, 3.781, 3.739, 3.837 and 3.852 kg/b,(P > 0.05) and water intake 11.113, 11.494, 11.850, 11.277 and 11.252 lit/b, (P > 0.05), respectively. Live body weight of broiler was higher in B1 (2.149), than A(2.091), B2(2.069), C1(1.952) and C2(1.929), kg/b (P < 0.05) and their FCR was better for B1(1.75) than B2(1.80), A(1.81), C1(1.85) and C2(1.99), respectively. Carcass weight of broiler for A (1.227), B1 (1.339), B2 (1.210), C1 (1.155) and C2 (1.200) kg/b, (P > 0.05) and their dressing percentage were A(60.46), B1 ( 62.41), B2(60.48), C1 (59.59) and C2(59.22) percent (P > 0.05), respectively. Mortality of broiler in group A (5.3), B1 (2.6), B2 (6.6), C1 (4.0) and C2 (1.3) percent (P > 0.05), respectively. The average weight of liver, heart, gizzard, spleen and intestine for various group of broiler were found non significant (P > 0.05). Net profit was better in group B1 (75.5), followed by B2 (68.3), A (62.5), C1 (51.8) and C2 (49.9) Rs/b, respectively. It was concluded that low protein diet supplemented with lysine plus methionine significantly improved live body weight of broiler.Key words: Protein, amino acid, supplemented, broiler
News from the Muon (g-2) Experiment at BNL
The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has
been measured at the Brookhaven Alternating Gradient Synchrotron with an
uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees
well with previous measurements. Standard Model evaluations currently differ
from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz,
Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc.
Suppl.); 5 pages, 3 figure
The Muon Anomalous Magnetic Moment and the Standard Model
The muon anomalous magnetic moment measurement, when compared with theory,
can be used to test many extensions to the standard model. The most recent
measurement made by the Brookhaven E821 Collaboration reduces the uncertainty
on the world average of a_mu to 0.7 ppm, comparable in precision to theory.
This paper describes the experiment and the current theoretical efforts to
establish a correct standard model reference value for the muon anomaly.Comment: Plenary Talk; PANIC'02 XVI Particles and Nuclear International
Conference, Osaka, Japan; Sept. 30 - Oct. 4, 2002; Report describes the
published 0.7 ppm result and updates the theory statu
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
The spin precession frequency of muons stored in the storage ring has
been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT
violation signatures were searched for: a nonzero
(=); and a sidereal variation of
. No significant effect is found, and the following
limits on the standard-model extension parameters are obtained: GeV; GeV; and the 95% confidence level limits
GeV and
GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to
answer the referees suggestion
An Improved Limit on the Muon Electric Dipole Moment
Three independent searches for an electric dipole moment (EDM) of the
positive and negative muons have been performed, using spin precession data
from the muon g-2 storage ring at Brookhaven National Laboratory. Details on
the experimental apparatus and the three analyses are presented. Since the
individual results on the positive and negative muon, as well as the combined
result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon
EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5
improvement over the previous best limit on the muon EDM.Comment: 19 pages, 15 figures, 7 table
Action ability modulates time‑to‑collision judgments
Time-to-collision (TTC) underestimation has been interpreted as an adaptive response that allows observers to have more time to engage in a defensive behaviour. This bias seems, therefore, strongly linked to action preparation. There is evidence that the observer’s physical fitness modulates the underestimation effect so that people who need more time to react (i.e. those with less physical fitness) show a stronger underestimation effect. Here we investigated whether this bias is influenced by the momentary action capability of the observers. In the first experiment, participants estimated the time-to-collision of threatening or non-threatening stimuli while being mildly immobilized (with a chin rest) or while standing freely. Having reduced the possibility of movement led participants to show more underestimation of the approaching stimuli. However, this effect was not stronger for threatening relative to non-threatening stimuli. The effect of the action capability found in the first experiment could be interpreted as an expansion of peripersonal space (PPS). In the second experiment, we thus investigated the generality of this effect using an established paradigm to measure the size of peripersonal space. Participants bisected lines from different distances while in the chin rest or standing freely. The results replicated the classic left-to-right gradient in lateral spatial attention with increasing viewing distance, but no effect of immobilization was found. The manipulation of the momentary action capability of the observers influenced the participants’ performance in the TTC task but not in the line bisection task. These results are discussed in relation to the different functions of PPS
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
The spin precession frequency of muons stored in the storage ring has
been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT
violation signatures were searched for: a nonzero
(=); and a sidereal variation of
. No significant effect is found, and the following
limits on the standard-model extension parameters are obtained: GeV; GeV; and the 95% confidence level limits
GeV and
GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to
answer the referees suggestion
Improved Measurement of the Positive Muon Anomalous Magnetic Moment
A new measurement of the positive muon's anomalous magnetic moment has been
made at the Brookhaven Alternating Gradient Synchrotron using the direct
injection of polarized muons into the superferric storage ring. The angular
frequency difference omega_{a} between the angular spin precession frequency
omega_{s} and the angular orbital frequency omega_{c} is measured as well as
the free proton NMR frequency omega_{p}. These determine
R = omega_{a} / omega_{p} = 3.707~201(19) times 10^{-3}. With mu_{mu} /
mu_{p} = 3.183~345~39(10) this gives a_{mu^+} = 11~659~191(59) times 10^{-10}
(pm 5 ppm), in good agreement with the previous CERN and BNL measurements for
mu^+ and mu^-, and with the standard model prediction.Comment: 4 pages, 4 figures. accepted for publication in Phys. Rev. D62 Rapid
Communication
Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL
We present the final report from a series of precision measurements of the
muon anomalous magnetic moment, a_mu = (g-2)/2. The details of the experimental
method, apparatus, data taking, and analysis are summarized. Data obtained at
Brookhaven National Laboratory, using nearly equal samples of positive and
negative muons, were used to deduce a_mu(Expt) = 11 659 208.0(5.4)(3.3) x
10^-10, where the statistical and systematic uncertainties are given,
respectively. The combined uncertainty of 0.54 ppm represents a 14-fold
improvement compared to previous measurements at CERN. The standard model value
for a_mu includes contributions from virtual QED, weak, and hadronic processes.
While the QED processes account for most of the anomaly, the largest
theoretical uncertainty, ~0.55 ppm, is associated with first-order hadronic
vacuum polarization. Present standard model evaluations, based on e+e- hadronic
cross sections, lie 2.2 - 2.7 standard deviations below the experimental
result.Comment: Summary paper of E821 Collaboration measurements of the muon
anomalous magnetic moment, each reported earlier in Letters or Brief Reports;
96 pages, 41 figures, 16 tables. Revised version submitted to PR
- …