32 research outputs found

    Administration of a single dose of lithium ameliorates rhabdomyolysis-associated acute kidney injury in rats.

    No full text
    Rhabdomyolysis is characterized by muscle damage and leads to acute kidney injury (AKI). Clinical and experimental studies suggest that glycogen synthase kinase 3β (GSK3β) inhibition protects against AKI basically through its critical role in tubular epithelial cell apoptosis, inflammation and fibrosis. Treatment with a single dose of lithium, an inhibitor of GSK3β, accelerated recovery of renal function in cisplatin and ischemic/reperfusion-induced AKI models. We aimed to evaluate the efficacy of a single dose of lithium in the treatment of rhabdomyolysis-induced AKI. Male Wistar rats were allocated to four groups: Sham, received saline 0.9% intraperitoneally (IP); lithium (Li), received a single IP injection of lithium chloride (LiCl) 80 mg/kg body weight (BW); glycerol (Gly), received a single dose of glycerol 50% 5 mL/kg BW intramuscular (IM); glycerol plus lithium (Gly+Li), received a single dose of glycerol 50% IM plus LiCl IP injected 2 hours after glycerol administration. After 24 hours, we performed inulin clearance experiments and collected blood / kidney / muscle samples. Gly rats exhibited renal function impairment accompanied by kidney injury, inflammation and alterations in signaling pathways for apoptosis and redox state balance. Gly+Li rats showed a remarkable improvement in renal function as well as kidney injury score, diminished CPK levels and an overstated decrease of renal and muscle GSK3β protein expression. Furthermore, administration of lithium lowered the amount of macrophage infiltrate, reduced NFκB and caspase renal protein expression and increased the antioxidant component MnSOD. Lithium treatment attenuated renal dysfunction in rhabdomyolysis-associated AKI by improving inulin clearance and reducing CPK levels, inflammation, apoptosis and oxidative stress. These therapeutic effects were due to the inhibition of GSK3β and possibly associated with a decrease in muscle injury

    Sildenafil reduces polyuria in rats with lithium-induced NDI

    No full text
    Sanches TR, Volpini RA, Massola Shimizu MH, de Bragan a AC, Oshiro-Monreal F, Seguro AC, Andrade L. Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 302: F216-F225, 2012. First published October 12, 2011; doi:10.1152/ajprenal.00439.2010.-Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; alpha-, beta-, and gamma-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, gamma-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESPFoundation for the Support of Research in the State of Sao Paulo)Foundation for the Support of Research in the State of Sao Paulo)Laboratorios de Investigacao Medica (LIMsLaboratorios de Investigacao Medica (LIMsMedical Investigation Laboratories) of the Faculdade de Medicina da Universidade de Sao Paulo (FMUSPMedical Investigation Laboratories) of the Faculdade de Medicina da Universidade de Sao Paulo (FMUSPUniversity of Sao Paulo School of Medicine) Hospital das ClinicasUniversity of Sao Paulo School of Medicine) Hospital das ClinicasConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPqNational Council for Scientific and Technological DevelopmentNational Council for Scientific and Technological Development) [134318/2006-4, 309430/2006-7, 302835/2009-1

    Vitamin D deficiency aggravates nephrotoxicity, hypertension and dyslipidemia caused by tenofovir: role of oxidative stress and renin-angiotensin system.

    No full text
    Vitamin D deficiency (VDD) is prevalent among HIV-infected individuals. Vitamin D has been associated with renal and cardiovascular diseases because of its effects on oxidative stress, lipid metabolism and renin-angiotensin-aldosterone system (RAAS). Tenofovir disoproxil fumarate (TDF), a widely used component of antiretroviral regimens for HIV treatment, can induce renal injury. The aim of this study was to investigate the effects of VDD on TDF-induced nephrotoxicity. Wistar rats were divided into four groups: control, receiving a standard diet for 60 days; VDD, receiving a vitamin D-free diet for 60 days; TDF, receiving a standard diet for 60 days with the addition of TDF (50 mg/kg food) for the last 30 days; and VDD+TDF receiving a vitamin D-free diet for 60 days with the addition of TDF for the last 30 days. TDF led to impaired renal function, hyperphosphaturia, hypophosphatemia, hypertension and increased renal vascular resistance due to downregulation of the sodium-phosphorus cotransporter and upregulation of angiotensin II and AT1 receptor. TDF also increased oxidative stress, as evidenced by higher TBARS and lower GSH levels, and induced dyslipidemia. Association of TDF and VDD aggravated renovascular effects and TDF-induced nephrotoxicity due to changes in the redox state and involvement of RAAS

    Lineage-Negative Bone Marrow Cells Protect Against Chronic Renal Failure

    No full text
    Progressive renal failure continues to be a challenge. the use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham ( laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1 beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure. STEM CELLS 2009; 27: 682-692Univ São Paulo, Sch Med, Fac Med,Lab Pesquisa Basica LIM 12, Dept Nephrol, BR-01246903 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Nephrol, São Paulo, BrazilUniv São Paulo, Dept Immunol, BR-01246903 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Nephrol, São Paulo, BrazilWeb of Scienc

    Vitamin D deficiency is a potential risk factor for lipid Amphotericin B nephrotoxicity.

    No full text
    Invasive fungal infections (IFI) is a worldwide serious health problem and Amphotericin B (AmB) has been considered the drug of choice for IFI treatment. Despite its efficacy, clinical use of AmB has been associated with renal toxicity. Some lines of evidence have shown that an extemporaneous lipid emulsion preparation of AmB (AmB/LE) was able to attenuate nephrotoxicity, presenting similar benefits at a lower cost. Studies have been demonstrating that hypovitaminosis D may hasten the progression of kidney disease and reflect on a worse prognosis in cases of drug-induced nephrotoxicity. In view of the high worldwide incidence of hypovitaminosis D, the aim of this study was to investigate whether vitamin D deficiency may induce AmB/LE-related nephrotoxicity. Wistar rats were divided into four groups: control, received a standard diet for 34 days; AmB/LE, received a standard diet for 34 days and AmB/LE (5 mg/kg/day) intraperitoneally in the last 4 days; VDD, received a vitamin D-free diet for 34 days; and VDD+AmB/LE, received a vitamin D-free diet for 34 days and AmB/LE as described. At the end of the protocol, animals were euthanized and blood, urine and renal tissue samples were collected in order to evaluate AmB/LE effects on renal function and morphology. Association of AmB/LE and vitamin D deficiency led to diminished glomerular filtration rate and increased tubular injury, evidenced by reduced renal protein expression of NaPi-IIa and TRPM6 leading to hyperphosphaturia / hypermagnesuria. VDD+AmB/LE rats also presented alterations in the PTH-Klotho-FGF-23 signaling axis, urinary concentrating defect and hypertension, probably due to an inappropriate activation of the renin-angiotensin-aldosterone system. Hence, it is important to monitor vitamin D levels in AmB/LE treated patients, since vitamin D deficiency induces AmB/LE nephrotoxicity

    Vitamin D deficiency aggravates chronic kidney disease progression after ischemic acute kidney injury.

    No full text
    Despite a significant improvement in the management of chronic kidney disease (CKD), its incidence and prevalence has been increasing over the years. Progressive renal fibrosis is present in CKD and involves the participation of several cytokines, including Transforming growth factor-β1 (TGF-β1). Besides cardiovascular diseases and infections, several studies show that Vitamin D status has been considered as a non-traditional risk factor for the progression of CKD. Given the importance of vitamin D in the maintenance of essential physiological functions, we studied the events involved in the chronic kidney disease progression in rats submitted to ischemia/reperfusion injury under vitamin D deficiency (VDD).Rats were randomized into four groups: Control; VDD; ischemia/reperfusion injury (IRI); and VDD+IRI. At the 62 day after sham or IRI surgery, we measured inulin clearance, biochemical variables and hemodynamic parameters. In kidney tissue, we performed immunoblotting to quantify expression of Klotho, TGF-β, and vitamin D receptor (VDR); gene expression to evaluate renin, angiotensinogen, and angiotensin-converting enzyme; and immunohistochemical staining for ED1 (macrophages), type IV collagen, fibronectin, vimentin, and α-smooth mucle actin. Histomorphometric studies were performed to evaluate fractional interstitial area.IRI animals presented renal hypertrophy, increased levels of mean blood pressure and plasma PTH. Furthermore, expansion of the interstitial area, increased infiltration of ED1 cells, increased expression of collagen IV, fibronectin, vimentin and α-actin, and reduced expression of Klotho protein were observed. VDD deficiency contributed to increased levels of plasma PTH as well as for important chronic tubulointerstitial changes (fibrosis, inflammatory infiltration, tubular dilation and atrophy), increased expression of TGF-β1 and decreased expression of VDR and Klotho protein observed in VDD+IRI animals.Through inflammatory pathways and involvement of TGF-β1 growth factor, VDD could be considered as an aggravating factor for tubulointerstitial damage and fibrosis progression following acute kidney injury induced by ischemia/reperfusion

    The Role of β-Adrenergic Overstimulation in the Early Stages of Renal Injury

    No full text
    Background/Aims: To assess the possible contribution of the β-adrenergic overstimulation in early stages of renal injury, the present study evaluated, in rats, the effects of the β-adrenoceptor agonist isoproterenol (ISO) on renal function and morphology, as well as the renal mRNA and protein expression of the NADPH oxidase isoform 4 (Nox 4) and subunit p22phox, endoplasmic reticulum (ER) stress, pro-inflammatory, pro-apoptotic and renin-angiotensin system (RAS) components. Methods: Wistar rats received ISO (0.3 mg.kg-1.day-1 s.c.) or vehicle (control) for eight days. At the end of the treatment, food and water intake, urine output and body weight gain were evaluated and renal function studies were performed. Renal tissue was used for the morphological, quantitative PCR and immunohistochemical studies. Results: ISO did not change metabolic parameters or urine output. However it induced a decrease in renal blood flow and an increase in the filtration fraction. These changes were accompanied by increased cortical mRNA and protein expression for the renal oxidative stress components including Nox 4 and p22phox; ER stress, pro-inflamatory, pro-apoptotic as well as RAS components. ISO also induced a significant increase in medullar renin protein expression. Conclusion: These findings support relevant information regarding the contribution of specific β-adrenergic hyperactivity in early stage of renal injury, indicating the reactive oxygen species, ER stress and intrarenal RAS as important factors in this process

    N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation

    No full text
    Campos R, Shimizu MH, Volpini RA, de Bragan a AC, Andrade L, Lopes FD, Olivo C, Canale D, Seguro AC. N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 302: L640-L650, 2012. First published January 20, 2012; doi: 10.1152/ajplung.00097.2011.-Sepsis is a common cause of acute kidney injury (AKI) and acute lung injury. Oxidative stress plays as important role in such injury. The aim of this study was to evaluate the effects that the potent antioxidant N-acetylcysteine (NAC) has on renal and pulmonary function in rats with sepsis. Rats, treated or not with NAC (4.8 g/l in drinking water), underwent cecal ligation and puncture (CLP) 2 days after the initiation of NAC treatment, which was maintained throughout the study. At 24 h post-CLP, renal and pulmonary function were studied in four groups: control, control + NAC, CLP, and CLP + NAC. All animals were submitted to low-tidal-volume mechanical ventilation. We evaluated respiratory mechanics, the sodium cotransporters Na-K-2Cl (NKCC1) and the alpha-subunit of the epithelial sodium channel (alpha-ENaC), polymorphonuclear neutrophils, the edema index, oxidative stress (plasma thiobarbituric acid reactive substances and lung tissue 8-isoprostane), and glomerular filtration rate. The CLP rats developed AKI, which was ameliorated in the CLP + NAC rats. Sepsis-induced alterations in respiratory mechanics were also ameliorated by NAC. Edema indexes were lower in the CLP + NAC group, as was the wet-to-dry lung weight ratio. In CLP + NAC rats, alpha-ENaC expression was upregulated, whereas that of NKCC1 was downregulated, although the difference was not significant. In the CLP + NAC group, oxidative stress was significantly lower and survival rates were significantly higher than in the CLP group. The protective effects of NAC (against kidney and lung injury) are likely attributable to the decrease in oxidative stress, suggesting that NAC can be useful in the treatment of sepsis.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Sao Paulo Research Foundation) [2009/50263-2, 2008/57243-4]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Sao Paulo Research Foundation)Brazilian Conselho Nacional de Pesquisa e Desenvolvimento Tecnologico (CNPq, National Council for Scientific and Technological Development) [309947/2009-0]Brazilian Conselho Nacional de Pesquisa e Desenvolvimento Tecnologico (CNPq, National Council for Scientific and Technological Development
    corecore