43 research outputs found
Diet-induced changes in iron and n-3 fatty acid status and associations with cognitive performance in 8-11-year-old Danish children: secondary analyses of the Optimal Well-Being, Development and Health for Danish Children through a Healthy New Nordic Diet School Meal Study
Published by Cambridge University Press in the British Journal of Nutrition. Sørensen, L. B., Damsgaard, C. T., Dalskov, S.-M., Petersen, R. A., Egelund, N., Dyssegaard, C. B., … Lauritzen, L. (2015). Diet-induced changes in iron and n-3 fatty acid status and associations with cognitive performance in 8–11-year-old Danish children: secondary analyses of the Optimal Well-Being, Development and Health for Danish Children through a Healthy New Nordic Diet School Meal Study. British Journal of Nutrition, 114(10), 1623–1637. https://doi.org/10.1017/S0007114515003323. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © The AuthorsFe and n-3 long-chain PUFA (n-3 LCPUFA) have both been associated with cognition, but evidence remains inconclusive in well-nourished school-aged children. In the Optimal Well-Being, Development and Health for Danish Children through a Healthy New Nordic Diet (OPUS) School Meal Study, the 3-month intervention increased reading performance, inattention, impulsivity and dietary intake of fish and Fe. This study investigated whether the intervention influenced n-3 LCPUFA and Fe status and, if so, explored how these changes correlated with the changes in cognitive performance. The study was a cluster-randomised cross-over trial comparing school meals with packed lunch (control). At baseline and after each treatment, we measured serum ferritin, whole-blood n-3 LCPUFA and Hb, and performance in reading, mathematics and d2-test of attention. Data were analysed using mixed models (n 726) and principal component analysis of test performances (n 644), which showed two main patterns: 'school performance' and 'reading comprehension'. The latter indicated that children with good reading comprehension were also more inattentive and impulsive (i.e. higher d2-test error%). The intervention improved 'school performance' (P = 0.015), 'reading comprehension' (P = 0.043) and EPA + DHA status 0.21 (95 % CI 0.15, 0.27) w/w % (P < 0.001), but it did not affect serum ferritin or Hb. At baseline, having small Fe stores was associated with poorer 'school performance' in girls, but with better 'reading comprehension' in both boys and girls. Both baseline EPA + DHA status and the intervention-induced increase in EPA + DHA status was positively associated with 'school performance', suggesting that n-3 LCPUFA could potentially explain approximately 20 % of the intervention effect. These exploratory associations indicate that increased fish intake might explain some of the increase in reading performance and inattention in the study.Nordea Foundation [02-2010-0389
Accuracy of self-reported intake of signature foods in a school meal intervention study: comparison between control and intervention period
Bias in self-reported dietary intake is important when evaluating the effect of dietary interventions, particularly for intervention foods. However, few have investigated this in children, and none have investigated the reporting accuracy of fish intake in children using biomarkers. In a Danish school meal study, 8- to 11-year-old children (n 834) were served the New Nordic Diet (NND) for lunch. The present study examined the accuracy of self-reported intake of signature foods (berries, cabbage, root vegetables, legumes, herbs, potatoes, wild plants, mushrooms, nuts and fish) characterising the NND. Children, assisted by parents, self-reported their diet in a Web-based Dietary Assessment Software for Children during the intervention and control (packed lunch) periods. The reported fish intake by children was compared with their ranking according to fasting whole-blood EPA and DHA concentration and weight percentage using the Spearman correlations and cross-classification. Direct observation of school lunch intake (n 193) was used to score the accuracy of food-reporting as matches, intrusions, omissions and faults. The reporting of all lunch foods had higher percentage of matches compared with the reporting of signature foods in both periods, and the accuracy was higher during the control period compared with the intervention period. Both Spearman's rank correlations and linear mixed models demonstrated positive associations between EPA+DHA and reported fish intake. The direct observations showed that both reported and real intake of signature foods did increase during the intervention period. In conclusion, the self-reported data represented a true increase in the intake of signature foods and can be used to examine dietary intervention effects
A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites
We present a full-length α(1)β(2)γ(2) GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and the backbone of β(2)S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and β(2)F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β(2)S156 and β(2)Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α(1)T206 and γ(2)T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α(1)H101 and the N-methyl group near α(1)Y159, α(1)T206, and α(1)Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABA(A) receptor is made available as Model S1
Meat consumption and mortality -results from the European Prospective Investigation into Cancer and Nutrition
Abstract Background: Recently, some US cohorts have shown a moderate association between red and processed meat consumption and mortality supporting the results of previous studies among vegetarians. The aim of this study was to examine the association of red meat, processed meat, and poultry consumption with the risk of early death in the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: Included in the analysis were 448,568 men and women without prevalent cancer, stroke, or myocardial infarction, and with complete information on diet, smoking, physical activity and body mass index, who were between 35 and 69 years old at baseline. Cox proportional hazards regression was used to examine the association of meat consumption with all-cause and cause-specific mortality. Results: As of June 2009, 26,344 deaths were observed. After multivariate adjustment, a high consumption of red meat was related to higher all-cause mortality (hazard ratio (HR) = 1.14, 95% confidence interval (CI) 1.01 to 1.28, 160+ versus 10 to 19.9 g/day), and the association was stronger for processed meat (HR = 1.44, 95% CI 1.24 to 1.66, 160+ versus 10 to 19.9 g/day). After correction for measurement error, higher all-cause mortality remained significant only for processed meat (HR = 1.18, 95% CI 1.11 to 1.25, per 50 g/d). We estimated that 3.3% (95% CI 1.5% to 5.0%) of deaths could be prevented if all participants had a processed meat consumption of less than 20 g/day. Significant associations with processed meat intake were observed for cardiovascular diseases, cancer, and 'other causes of death'. The consumption of poultry was not related to all-cause mortality. Conclusions: The results of our analysis support a moderate positive association between processed meat consumption and mortality, in particular due to cardiovascular diseases, but also to cancer