200 research outputs found
Sputter deposition of porous thin films from metal/NaCl powder targets
A method to deposit porous thin films is elucidated. For this purpose, NaCl powder was mixed with a metal powder, cold pressed, and used as a target material in order to deposit a metal/NaCl thin film by DC magnetron sputtering. The thin film was immersed in water after deposition to remove the salt and to obtain a porous film. The low thermal conductivity of the target results in target heating and salt sublimation. In this way, the salt content in the layer and hence the film porosity are controlled by the discharge power. This procedure was carried out for Cu and Ti. The study focuses on the deposition of porous Cu thin films. From scanning transmission electron microscopy images, two film structures were observed. Films with a density higher than approximate to 40% of the bulk density exhibit a homogeneous spongelike microstructure with pores around 20nm. At lower density, a noncontinuous, fractured layer is formed. The blocks between the observed cracks manifest itself in the form of columnar pores. The lowest measured density was approximate to 23% of the bulk density. This approach combines the flexibility of powder targets and the scalability of magnetron sputtering and avoids the usage of aggressive chemicals
Superconducting YBa2Cu3O7-δ nanocomposite films using preformed metal oxide nanocrystals
People's concern about global warming and the rapid growth of the world population has prompted scientists to develop renewable electrical energy and to find new technologies with a minimum of carbon dioxide emissions. High-temperature superconducting technologies have the potential to transport electricity without resistance. However, the implementation of these high-temperature superconductors in power applications is constrained due to the presence and movement of vortices in the presence of a medium to high magnetic field.
In this research, we focused on the improvement of the superconducting YBa2Cu3O7-δ (YBCO) properties by immobilizing the vortices via the incorporation of preformed metal oxide nanocrystals as artificial pinning centers in the YBCO matrix. The chemical solution deposition approach was introduced to synthesize the high-quality superconducting nanocomposite thin films starting from nano-suspensions for the implementation of the YBCO coated conductors throughout the energy market
Chemical solution deposition of functional ceramic coatings using ink-jet printing
This paper discusses the development of environmentally-friendly precursor inks suited for ink-jet printing of functional ceramic coatings. We synthesized superconducting materials, SrTiO3 thin films for coated conductor applications and transparent TiO2 photocatalytic coatings. Here, we discuss all aspects of ink formulation, including the stabilization of metal ions, nanoparticle inks or combination of both. This demands the investigation and determination of the inks rheological parameters. Ceramic nanoparticles are often incorporated in our inks to decrease thermal processing temperatures (e.g., TiO2 or YSZ coatings...) or enhance the properties of the functional ceramic coating (e.g., pinning centres in superconducting coatings). These ceramic nanoparticles (ZrO2, HfO2, TiO2...) are synthesized through methods based on microwave heating from aqueous and/or organic solutions. With that, we aim at developing smart and environmentally friendly processes that require lower energy input
Microwave-assisted YBa2Cu3O7 precursors : a fast and reliable method towards chemical precursors for superconducting films
Highly stable, pure, and anhydrous organometallic YBa2Cu3O7- (YBCO) precursor solutions were prepared by dissolving commercial YBCO powder in acetone by trifluoroacetic anhydride (TFAA) or a mixture of TFAA with propionic acid for low fluorine precursors. It is shown that compared to conventional oil bath heating reported in literature, the reaction to produce YBCO precursor occurs 72 times faster by microwave heating. More importantly, the formation of byproducts is suppressed, as shown by nuclear magnetic resonance (NMR) and mass spectrometry (MS). This approach allows a highly reproducible preparation of superconducting coatings which is of interest for low-cost manufacturing processes capable of large-scale production of the coated conductors via chemical solution deposition (CSD). This technology requires reliable and stable precursor solutions for continuous deposition. In this work, we obtained YBCO thin films on single-crystal substrates ((100)-LaAlO3) with a high critical current density (J(c)) of 3-4 MA/cm(2) in self-field at 77 K using TFA-based YBCO precursors and J(c) of 5-6 MA/cm(2) using low fluorine YBCO precursors
Self-assembled nanorods in YBCO matrix : a computational study of their effects on critical current anisotropy
In order to understand how the doping with self-assembled nanorods of different sizes and concentrations as well as applied magnetic fields affect the critical current anisotropy in YBa2Cu3O7-x (YBCO) thin films close to YBCO c-axis, we present an extensive and systematic computational study done by molecular dynamics simulation. The simulations are also used to understand experimentally measured J(c)(theta) curves for BaHfO3, BaZrO3 and BaSnO3 doped YBCO thin films with the help of nanorod parameters obtained from transmission electron microscopy measurements. Our simulations reveal that the relation between applied and matching field plays a crucial role in the formation of J(c)(theta)-peak around YBCO c-axis (c-peak) due to vortex-vortex interactions. We also find how different concentrations of different size nanorods effect the shape of the c-peak and explain how different features, such as double c-peak structures, arise. In addition to this, we have quantitatively explained that, even in an ideal superconductor, the overdoping of nanorods results in decrease of the critical current. Our results can be widely used to understand and predict the critical current anisotropy of YBCO thin films to improve and develop new pinscapes for various transport applications
Enhanced flux pinning isotropy by tuned nanosized defect network in superconducting YBa2Cu3O6+x films
Striving to improve the critical current density Jc of superconductingYBa(2)Cu(3)O(6+x) (YBCO) thin films via enhanced vortex pinning, the interplay between film growth mechanisms and the formation of nanosized defects, both natural and artificial, is systematically studied in undoped and BaZrO3 (BZO)-doped YBCO thin films. The films were grown via pulsed laser deposition (PLD), varying the crystal grain size of the targets in addition to the dopant content. The microstructure of the PLD target has been observed to have a great impact on that of the deposited thin films, including the formation of vortex pinning centers, which has direct implications on the superconducting performance, especially on the isotropy of flux pinning properties. Based on experimentally measured angular dependencies of Jc, coupled with a molecular dynamics (MD) simulation of flux pinning in the YBCO films, we present a quantitative model of how the splay and fragmentation of BZO nanorods artifically introduced into the YBCO film matrix explain the majority of the observed critical current anisotropy
Amino acid-based stabilization of oxide nanocrystals in polar media : from insight in ligand exchange to solution H-1 NMR probing of short-chained adsorbates
Ligand exchange is a crucial step between nanocrystal synthesis and nanocrystal application. Although colloidal stability and ligand exchange in nonpolar media are readily established, the exchange of native, hydrophobic ligands with polar ligands is less systematic. In this paper, we present a versatile ligand exchange strategy for the phase transfer of carboxylic acid capped HfO2 and ZrO2 nanocrystals to various polar solvents, based on small amino acids as the incoming ligand. To gain insight in the fundamental mechanism of the exchange, we study this system with a combination of FTIR, zeta potential measurements, and solution H-1 NMR techniques. The detection of surface-associated, small ligands with solution NMR proves challenging in this respect. Tightly bound amino acids are undetectable, but their existence can be proven through displacement with other ligands in titration experiments. Alternatively, we find that methyl moieties belonging to bound species can circumvent these limitations because of their more favorable relaxation properties as a result of internal mobility. As such, our results are not limited to amino acids but to any short-chained ligand and will therefore facilitate the rigorous investigation and understanding of various ligand exchange processes
Pair distribution function analysis of ZrO2 nanocrystals and insights in the formation of ZrO2-YBa2Cu3O7 nanocomposites
The formation of superconducting nanocomposites from preformed nanocrystals is still not well understood. Here, we examine the case of ZrO2 nanocrystals in a YBa2Cu3O7-x matrix. First we analyzed the preformed ZrO2 nanocrystals via atomic pair distribution function analysis and found that the nanocrystals have a distorted tetragonal crystal structure. Second, we investigated the influence of various surface ligands attached to the ZrO2 nanocrystals on the distribution of metal ions in the pyrolyzed matrix via secondary ion mass spectroscopy technique. The choice of stabilizing ligand is crucial in order to obtain good superconducting nanocomposite films with vortex pinning. Short, carboxylate based ligands lead to poor superconducting properties due to the inhomogeneity of metal content in the pyrolyzed matrix. Counter-intuitively, a phosphonate ligand with long chains does not disturb the growth of YBa2Cu3O7-x. Even more surprisingly, bisphosphonate polymeric ligands provide good colloidal stability in solution but do not prevent coagulation in the final film, resulting in poor pinning. These results thus shed light on the various stages of the superconducting nanocomposite formation
- …
