161 research outputs found
Non-linear inflationary perturbations
We present a method by which cosmological perturbations can be quantitatively
studied in single and multi-field inflationary models beyond linear
perturbation theory. A non-linear generalization of the gauge-invariant
Sasaki-Mukhanov variables is used in a long-wavelength approximation. These
generalized variables remain invariant under time slicing changes on long
wavelengths. The equations they obey are relatively simple and can be
formulated for a number of time slicing choices. Initial conditions are set
after horizon crossing and the subsequent evolution is fully non-linear. We
briefly discuss how these methods can be implemented numerically in the study
of non-Gaussian signatures from specific inflationary models.Comment: 10 pages, replaced to match JCAP versio
Quantitative bispectra from multifield inflation
After simplifying and improving the non-Gaussian formalism we developed in
previous work, we derive a quantitative expression for the three-point
correlator (bispectrum) of the curvature perturbation in general multiple-field
inflation models. Our result describes the evolution of non-Gaussianity on
superhorizon scales caused by the nonlinear influence of isocurvature
perturbations on the adiabatic perturbation during inflation. We then study a
simple quadratic two-field potential and find that when slow roll breaks down
and the field trajectory changes direction in field space, the non-Gaussianity
can become large. However, for the simple models studied to date, the magnitude
of this non-Gaussianity decays away after the isocurvature mode is converted
into the adiabatic mode.Comment: 7 pages, 1 figure. v4: Added remarks on momentum dependence, minor
textual changes, matches published versio
Simple route to non-Gaussianity in inflation
We present a simple way to calculate non-Gaussianity in inflation using fully
non-linear equations on long wavelengths with stochastic sources to take into
account the short-wavelength quantum fluctuations. Our formalism includes both
scalar metric and matter perturbations, combining them into variables which are
invariant under changes of time slicing in the long-wavelength limit. We
illustrate this method with a perturbative calculation in the single-field
slow-roll case. We also introduce a convenient choice of variables to
graphically present the full momentum dependence of the three-point correlator.Comment: 6 pages, 2 figures. v2: Updated formalism to version described in
astro-ph/0504508, leading to dropping of one unnecessary approximation. Final
results not significantly changed. Extended discussion of calculation and
added graphical presentation of full momentum dependence. References
corrected and added. v3: Final version, only small textual change
Large non-Gaussianity in multiple-field inflation
We investigate non-Gaussianity in general multiple-field inflation using the
formalism we developed in earlier papers. We use a perturbative expansion of
the non-linear equations to calculate the three-point correlator of the
curvature perturbation analytically. We derive a general expression that
involves only a time integral over background and linear perturbation
quantities. We work out this expression explicitly for the two-field slow-roll
case, and find that non-Gaussianity can be orders of magnitude larger than in
the single-field case. In particular, the bispectrum divided by the square of
the power spectrum can easily be of O(1-10), depending on the model. Our result
also shows the explicit momentum dependence of the bispectrum. This conclusion
of large non-Gaussianity is confirmed in a semi-analytic slow-roll
investigation of a simple quadratic two-field model.Comment: 21 pages, 9 figures. v4: Minor textual changes to match published
version. In addition, and superseding the published version, a small error in
X and X-bar has been corrected; no significant changes to the final results.
Note that an extended (no slow roll) numerical treatment superseding section
V.D is available in astro-ph/051104
Non-Gaussian perturbations from multi-field inflation
We show how the primordial bispectrum of density perturbations from inflation
may be characterised in terms of manifestly gauge-invariant cosmological
perturbations at second order. The primordial metric perturbation, zeta,
describing the perturbed expansion of uniform-density hypersurfaces on large
scales is related to scalar field perturbations on unperturbed (spatially-flat)
hypersurfaces at first- and second-order. The bispectrum of the metric
perturbation is thus composed of (i) a local contribution due to the
second-order gauge-transformation, and (ii) the instrinsic bispectrum of the
field perturbations on spatially flat hypersurfaces. We generalise previous
results to allow for scale-dependence of the scalar field power spectra and
correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged;
version to appear in JCA
The Scalar Field Kernel in Cosmological Spaces
We construct the quantum mechanical evolution operator in the Functional
Schrodinger picture - the kernel - for a scalar field in spatially homogeneous
FLRW spacetimes when the field is a) free and b) coupled to a spacetime
dependent source term. The essential element in the construction is the causal
propagator, linked to the commutator of two Heisenberg picture scalar fields.
We show that the kernels can be expressed solely in terms of the causal
propagator and derivatives of the causal propagator. Furthermore, we show that
our kernel reveals the standard light cone structure in FLRW spacetimes. We
finally apply the result to Minkowski spacetime, to de Sitter spacetime and
calculate the forward time evolution of the vacuum in a general FLRW spacetime.Comment: 13 pages, 1 figur
Non-Gaussianity in braneworld and tachyon inflation
We calculate the bispectrum of single-field braneworld inflation, triggered
by either an ordinary scalar field or a cosmological tachyon, by means of a
gradient expansion of large-scale non-linear perturbations coupled to
stochastic dynamics. The resulting effect is identical to that for single-field
4D standard inflation, the non-linearity parameter being proportional to the
scalar spectral index in the limit of collapsing momentum. If the slow-roll
approximation is assumed, braneworld and tachyon non-Gaussianities are
subdominant with respect to the post-inflationary contribution. However, bulk
physics may considerably strengthen the non-linear signatures. These features
do not change significantly when considered in a non-commutative framework.Comment: 17 pages; v2: added references and previously skipped details in the
derivation of the result; v3: improved discussio
- …