71 research outputs found

    Functional geometry alignment and localization of brain areas

    Get PDF
    Matching functional brain regions across individuals is a challenging task, largely due to the variability in their location and extent. It is particularly difficult, but highly relevant, for patients with pathologies such as brain tumors, which can cause substantial reorganization of functional systems. In such cases spatial registration based on anatomical data is only of limited value if the goal is to establish correspondences of functional areas among different individuals, or to localize potentially displaced active regions. Rather than rely on spatial alignment, we propose to perform registration in an alternative space whose geometry is governed by the functional interaction patterns in the brain. We first embed each brain into a functional map that reflects connectivity patterns during a fMRI experiment. The resulting functional maps are then registered, and the obtained correspondences are propagated back to the two brains. In application to a language fMRI experiment, our preliminary results suggest that the proposed method yields improved functional correspondences across subjects. This advantage is pronounced for subjects with tumors that affect the language areas and thus cause spatial reorganization of the functional regions.National Institutes of Health (U.S.) (P01 CA067165)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (NIBIB NAMIC U54- EB005149)National Institutes of Health (U.S.) (NCRR NAC P41-RR13218)National Science Foundation (U.S.) (CAREER Grant 0642971)National Science Foundation (U.S.) (Grant IIS/CRCNS 0904625

    Decoupling function and anatomy in atlases of functional connectivity patterns: Language mapping in tumor patients

    Get PDF
    In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors.National Science Foundation (U.S.). Division of Information & Intelligent Systems (Collaborative Research in Computational Neuroscience Grant 0904625)National Science Foundation (U.S.) (CAREER Grant 0642971)National Institutes of Health (U.S.) (National Center for Research Resources (U.S.)/Neuroimaging Analysis Center (U.S.) P41-RR13218)National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/Neuroimaging Analysis Center (U.S.) P41-EB-015902)National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/National Alliance for Medical Image Computing (U.S.) U54-EB005149)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) R01HD067312)National Institutes of Health (U.S.) (P01CA067165)Brain Science FoundationKlarman Family FoundationEuropean Commission (FP7/2007–2013) n°257528 (KHRESMOI))European Commission (330003 (FABRIC))Austrian Science Fund (P 22578-B19 (PULMARCH)

    Tumor BOLD connectivity profile correlates with glioma patients' survival

    Get PDF
    Background: Presence of residual neurovascular activity within glioma lesions have been recently demonstrated via functional MRI (fMRI) along with active electrical synapses between glioma cells and healthy neurons that influence survival. In this study, we aimed to investigate whether gliomas demonstrate synchronized neurovascular activity with the rest of the brain, by measuring Blood Oxygen Level Dependent (BOLD) signal synchronization, that is, functional connectivity (FC), while also testing whether the strength of such connectivity might predict patients' overall survival (OS). Methods: Resting-state fMRI scans of patients who underwent pre-surgical brain mapping were analyzed (total sample, n = 54; newly diagnosed patients, n = 18; recurrent glioma group, n = 36). A seed-To-voxel analysis was conducted to estimate the FC signal profile of the tumor mass. A regression model was then built to investigate the potential correlation between tumor FC and individual OS. Finally, an unsupervised, cross-validated clustering analysis was performed including tumor FC and clinical OS predictors (e.g., Karnofsky Performance Status-KPS-score, tumor volume, and genetic profile) to verify the performance of tumor FC in predicting OS with respect to validated radiological, demographic, genetic and clinical prognostic factors. Results: In both newly diagnosed and recurrent glioma patients a significant pattern of BOLD synchronization between the solid tumor and distant brain regions was found. Crucially, glioma-brain FC positively correlated with variance in individual survival in both newly diagnosed glioma group (r = 0.90-0.96; P <. 001; R2 = 81-92%) and in the recurrent glioma group (r = 0.72; P <. 001; R2 = 52%), outperforming standard clinical, radiological and genetic predictors. Conclusions: Results suggest glioma's synchronization with distant brain regions should be further explored as a possible diagnostic and prognostic biomarker

    Fire retardant action of mineral fillers

    Get PDF
    Endothermically decomposing mineral fillers, such as aluminium or magnesium hydroxide, magnesium carbonate, or mixed magnesium/calcium carbonates and hydroxides, such as naturally occurring mixtures of huntite and hydromagnesite are in heavy demand as sustainable, environmentally benign fire retardants. They are more difficult to deploy than the halogenated flame retardants they are replacing, as their modes of action are more complex, and are not equally effective in different polymers. In addition to their presence (at levels up to 70%), reducing the flammable content of the material, they have three quantifiable fire retardant effects: heat absorption through endothermic decomposition; increased heat capacity of the polymer residue; increased heat capacity of the gas phase through the presence of water or carbon dioxide. These three contributions have been quantified for eight of the most common fire retardant mineral fillers, and the effects on standard fire tests such as the LOI, UL 94 and cone calorimeter discussed. By quantifying these estimable contributions, more subtle effects, which they might otherwise mask, may be identified
    • …
    corecore