2,508 research outputs found

    Diffuser/ejector system for a very high vacuum environment

    Get PDF
    Turbo jet engines are used to furnish the necessary high temperature, high volume, medium pressure gas to provide a high vacuum test environment at comparatively low cost for space engines at sea level. Moreover, the invention provides a unique way by use of the variable area ratio ejectors with a pair of meshing cones are used. The outer cone is arranged to translate fore and aft, and the inner cone is interchangeable with other cones having varying angles of taper

    Evaluation of MODIS and VIIRS Cloud-Gap-Filled Snow-Cover Products for Production of an Earth Science Data Record

    Get PDF
    MODerate resolution Imaging Spectroradiometer (MODIS) cryosphere products have been available since 2000 following the 1999 launch of the Terra MODIS and the 2002 launch of the Aqua MODIS and include global snow-cover extent (SCE) (swath, daily, and 8 d composites) at 500 m and 5 km spatial resolutions. These products are used extensively in hydrological modeling and climate studies. Reprocessing of the complete snow-cover data record, from Collection 5 (C5) to Collection 6 (C6) and Collection 6.1 (C6.1), has provided improvements in the MODIS product suite. Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Collection 1 (C1) snow-cover products at a 375 m spatial resolution have been available since 2011 and are currently being reprocessed for Collection 2 (C2). Both the MODIS C6.1 and the VIIRS C2 products will be available for download from the National Snow and Ice Data Center beginning in early 2020 with the complete time series available in 2020. To address the need for a cloud-reduced or cloud-free daily SCE product for both MODIS and VIIRS, a daily cloud-gap-filled (CGF) snow-cover algorithm was developed for MODIS C6.1 and VIIRS C2 processing. MOD10A1F (Terra) and MYD10A1F (Aqua) are daily, 500 m resolution CGF SCE map products from MODIS. VNP10A1F is the daily, 375 m resolution CGF SCE map product from VIIRS. These CGF products include quality-assurance data such as cloud-persistence statistics showing the age of the observation in each pixel. The objective of this paper is to introduce the new MODIS and VIIRS standard CGF daily SCE products and to provide a preliminary evaluation of uncertainties in the gap-filling methodology so that the products can be used as the basis for a moderate-resolution Earth science data record (ESDR) of SCE. Time series of the MODIS and VIIRS CGF products have been developed and evaluated at selected study sites in the US and southern Canada. Observed differences, although small, are largely attributed to cloud masking and differences in the time of day of image acquisition. A nearly 3-month time-series comparison of Terra MODIS and S-NPP VIIRS CGF snow-cover maps for a large study area covering all or parts of 11 states in the western US and part of southwestern Canada reveals excellent correspondence between the Terra MODIS and S-NPP VIIRS products, with a mean difference of 11 070 sqkm, which is 0.45 % of the study area. According to our preliminary validation of the Terra and Aqua MODIS CGF SCE products in the western US study area, we found higher accuracy of the Terra product compared with the Aqua product. The MODIS CGF SCE data record beginning in 2000 has been extended into the VIIRS era, which should last at least through the early 2030s

    Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing in the Wind River Range, Wyoming

    Get PDF
    MODIS-derived snow cover measured on 30 April in any given year explains approximately 89 % of the variance in stream discharge for maximum monthly streamflow in that year. Observed changes in streamflow appear to be related to increasing maximum air temperatures over the last four decades causing lower spring snow-cover extent. The majority (>70%) of the water supply in the western United States comes from snowmelt, thus analysis of the declining spring snowpack (and resulting declining stream discharge) has important implications for streamflow management in the drought-prone western U.S

    Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Get PDF
    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S

    Intraoperative electrocochleographic characteristics of auditory neuropathy spectrum disorder in cochlear implant subjects

    Get PDF
    Auditory neuropathy spectrum disorder (ANSD) is characterized by an apparent discrepancy between measures of cochlear and neural function based on auditory brainstem response (ABR) testing. Clinical indicators of ANSD are a present cochlear microphonic (CM) with small or absent wave V. Many identified ANSD patients have speech impairment severe enough that cochlear implantation (CI) is indicated. To better understand the cochleae identified with ANSD that lead to a CI, we performed intraoperative round window electrocochleography (ECochG) to tone bursts in children (n = 167) and adults (n = 163). Magnitudes of the responses to tones of different frequencies were summed to measure the “total response” (ECochG-TR), a metric often dominated by hair cell activity, and auditory nerve activity was estimated visually from the compound action potential (CAP) and auditory nerve neurophonic (ANN) as a ranked “Nerve Score”. Subjects identified as ANSD (45 ears in children, 3 in adults) had higher values of ECochG-TR than adult and pediatric subjects also receiving CIs not identified as ANSD. However, nerve scores of the ANSD group were similar to the other cohorts, although dominated by the ANN to low frequencies more than in the non-ANSD groups. To high frequencies, the common morphology of ANSD cases was a large CM and summating potential, and small or absent CAP. Common morphologies in other groups were either only a CM, or a combination of CM and CAP. These results indicate that responses to high frequencies, derived primarily from hair cells, are the main source of the CM used to evaluate ANSD in the clinical setting. However, the clinical tests do not capture the wide range of neural activity seen to low frequency sounds

    Possible scale invariant linear magnetoresistance in pyrochlore iridates Bi2Ir2O7

    Get PDF
    We report the observation of a linear magnetoresistance in single crystals and epitaxial thin films of the pyrochlore iridate Bi2Ir2O7. The linear magnetoresistance is positive and isotropic at low temperatures, without any sign of saturation up to 35 T. As temperature increases, the linear field dependence gradually evolves to a quadratic field dependence. The temperature and field dependence of magnetoresistance of Bi2Ir2O7 bears strikingly resemblance to the scale invariant magnetoresistance observed in the strange metal phase in high Tc cuprates. However, the residual resistivity of Bi2Ir2O7 is more than two orders of magnitude higher than the curpates. Our results suggest that the correlation between linear magnetoresistance and quantum fluctuations may exist beyond high temperature superconductors

    A Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Get PDF
    We are developing a climate-data record (CDR of daily "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. The CDR will be continued in the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite era. Two algorithms remain under consideration. One algorithm under consideration is based on the split-window technique used in the Polar Pathfinder dataset (Fowler et al., 2000 & 21007). Another algorithm under consideration, developed by Comiso (2006), uses a single channel of AVHRR data (channel 4) in conjunction with meteorological-station data to account for atmospheric effects and drift between AVHRR instruments. Known issues being addressed in the production of the CDR are: tune-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds (Stroeve & Steffen, 1998; Wang and Key, 2005; Hall et al., 2008 and Koenig and Hall, submitted), time-series of satellite 1S'1" do not necessarily correspond to actual surface temperatures. The CDR will be validated by comparing results with automatic-,",eather station (AWS) data and with satellite-derived surface-temperature products. Regional "clear-sky" surface temperature increases in the Arctic, measured from AVHRR infrared data, range from 0.57+/-0.02 deg C (Wang and Key, 2005) to 0.72+/-0.10 deg C (Comiso, 2006) per decade since the early 1980s. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. Reference

    Preliminary Validation of the AFWA-NASA Blended Snowcover Product Over the Lower Great Lakes region

    Get PDF
    A new snow product created using the standard Moderate-Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) snow cover and snow-water equivalent products has been evaluated for the Lower Great Lakes region during the winter of 2002- 03. National Weather Service Co-Operative Observing Network stations and student-acquired snow data were used as ground truth. An interpolation scheme was used to map snow cover on the ground from the station measurements for each day of the study period. It is concluded that this technique does not represent the actual ground conditions adequately to permit evaluation of the new snow product in an absolute sense. However, use of the new product was found to improve the mapping of snow cover as compared to using either the MODIS or AMSR-E product, alone. Plans for further analysis are discussed

    Preliminary Evaluation of the AFWA-NASA (ANSA) Blended Snow-Cover Product over the Lower Great Lakes Region

    Get PDF
    The Air Force Weather Agency (AFWA) - NASA (ANSA) blended-snow product utilizes EOS standard snow products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE. with SWE values calculated from snow depths reported at approx.1500 National Climatic Data Center (NCDC) coop stations in the Lower Great Lakes basin. Our preliminary results show that conversion of snow depth to SWE is very sensitive to the choice of snow density (we used either 0.2 or 03 as conversion factors). We found overall better agreement between the ANSA-derived SWE and the co-op station data when we use a snow density of 0.3 to convert the snow depths to SWE. In addition, we show that the ANSA underestimates SWE in densely-forested areas, using January and February 2008 ANSA and co-op data. Furthermore, apparent large SWE changes from one day to the next may be caused by thaw-re-freeze events, and do not always represent a real change in SWE. In the near future we will continue the analysis in the 2006-07 and 2007-08 snow seasons
    corecore