2,065 research outputs found
Tension fatigue analysis and life prediction for composite laminates
A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth
Anelastic relaxation and La NQR in LaSrCuO around the critical Sr content x=0.02
Anelastic relaxation and La NQR relaxation measurements in
LaSrCuO for Sr content x around 2 and 3 percent, are presented
and discussed in terms of spin and lattice excitations and ordering processes.
It is discussed how the phase diagram of LaSrCuO at the
boundary between the antiferromagnetic (AF) and the spin-glass phase (x = 0.02)
could be more complicate than previous thought, with a transition to a
quasi-long range ordered state at T = 150 K, as indicated by recent neutron
scattering data. On the other hand, the La NQR spectra are compatible
with a transition to a conventional AF phase around T = 50 K, in agreement with
the phase diagram commonly accepted in the literature. In this case the
relaxation data, with a peak of magnetic origin in the relaxation rate around
150 K at 12 MHz and the anelastic counterparts around 80 K in the kHz range,
yield the first evidence in LaSrCuO of freezing involving
simultaneously lattice and spin excitations. This excitation could correspond
to the motion of charged stripes.Comment: 10 pages, 8 figure
Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study
F NMR measurements in SmFeAsOF, for ,
are presented. The nuclear spin-lattice relaxation rate increases upon
cooling with a trend analogous to the one already observed in
CeCuAu, a quasi two-dimensional heavy-fermion intermetallic
compound with an antiferromagnetic ground-state. In particular, the behaviour
of the relaxation rate either in SmFeAsOF or in
CeCuAu can be described in the framework of the self-consistent
renormalization theory for weakly itinerant electron systems. Remarkably, no
effect of the superconducting transition on F is detected, a
phenomenon which can hardly be explained within a single band model.Comment: 4 figure
On the "spin-freezing" mechanism in underdoped superconducting cuprates
The letter deals with the spin-freezing process observed by means of NMR-NQR
relaxation or by muon spin rotation in underdoped cuprate superconductors. This
phenomenon, sometimes referred as coexistence of antiferromagnetic and
superconducting order parameters, is generally thought to result from randomly
distributed magnetic moments related to charge inhomogeneities (possibly
stripes) which exhibit slowing down of their fluctuations on cooling below
T . Instead, we describe the experimental findings as due to fluctuating,
vortex-antivortex, orbital currents state coexisting with d-wave
superconducting state. A direct explanation of the experimental results, in
underdoped YCaBaCuO and LaSrCuO,
is thus given in terms of freezing of orbital current fluctuations
Superconducting phase fluctuations in SmFeAsOF from diamagnetism at low magnetic field above
Superconducting fluctuations (SF) in SmFeAsOF (characterized
by superconducting transition temperature K) are
investigated by means of isothermal high-resolution dc magnetization
measurements. The diamagnetic response to magnetic fields up to 1 T above
is similar to what previously reported for underdoped cuprate
superconductors and it can be justified in terms of metastable superconducting
islands at non-zero order parameter lacking of long-range coherence because of
strong phase fluctuations. In the high-field regime ( T) scaling
arguments predicted on the basis of the Ginzburg-Landau theory of conventional
SF are found to be applicable, at variance with what observed in the low-field
regime. This fact enlightens that two different phenomena are simultaneously
present in the fluctuating diamagnetism, namely the phase SF of novel character
and the conventional SF. High magnetic fields (1.5 T )
are found to suppress the former while leaving unaltered the latter one.Comment: 7 pages, 5 figure
Kohn-Sham Exchange Potential for a Metallic Surface
The behavior of the surface barrier that forms at the metal-vacuum interface
is important for several fields of surface science. Within the Density
Functional Theory framework, this surface barrier has two non-trivial
components: exchange and correlation. Exact results are provided for the
exchange component, for a jellium metal-vacuum interface, in a slab geometry.
The Kohn-Sham exact-exchange potential has been generated by using
the Optimized Effective Potential method, through an accurate numerical
solution, imposing the correct boundary condition. It has been proved
analytically, and confirmed numerically, that ; this conclusion is not affected by the inclusion of correlation
effects. Also, the exact-exchange potential develops a shoulder-like structure
close to the interface, on the vacuum side. The issue of the classical image
potential is discussed.Comment: Phys. Rev. Lett. (to appear
Life cycle assessment of a floating offshore wind farm in Italy
Mitigation of climate change requires consistent actions toward the reduction of emissions from the energy sector: in the last years, renewable energy technologies, such as wind power, have become a cost-effective option to pursue the transition to low emission systems for power generation. Offshore wind energy can provide access to additional wind resources, also overcoming some issues related to onshore wind deployments such as land-use competition and social acceptability. The Life Cycle Assessment (LCA) methodology can be used to gain insight into the environmental performances of different technologies, e.g. renewable energy generation technologies, along the lifecycle stages and across a number of impact categories. This paper reports the cradle-to-grave LCA of a floating offshore wind farm, consisting of 190 wind turbines with 14.7 MW rated power, intended to be deployed in the Mediterranean Sea. The employed technology is represented by the IEA 15 MW reference wind turbine supported by the reference semi-submersible platform. The selected functional unit is the delivery of 1 GWh of electricity to the onshore grid and the impact assessment method is the EPD (version 2018), which is usually used for the creation of Environmental Product Declarations (EPDs) and considers 8 impact categories. The results of the analysis show that the supply of raw materials, especially steel, for aerogenerators and floaters is the most significant contributor to the overall potential impacts in all the impact categories, except for abiotic depletion of elements, where power cables are the hotspot. In the perspective of decarbonisation, the estimated carbon intensity is 31 g CO2eq/kWh and so it results competitive with other low emissions electricity generation technologies. To compare the estimated global warming impacts to other studies, some harmonisations efforts on capacity factor and lifetime of turbines are made. Moreover, the wind farm performance has been evaluated in terms of carbon and energy payback time, estimated in 2 and 3 years respectively, showing a substantial benefit when compared to the expected 30-year lifetime. As a conclusion, despite the number of approximations and conservative assumptions, floating offshore wind power, represented by the modelled case study, can be considered a promising technology and has been found to be already competitive with other renewable electricity generation technologies. Future research should address the uncertainty rooted to the data: repeating the analysis relying on the executive project, and therefore on a more detailed modelling, would help to get more accurate results
Two-bands effect on the superconducting fluctuating diamagnetism in MgB₂
The field dependence of the magnetization above the transition temperature Tc
in MgB₂ is shown to evidence a diamagnetic contribution consistent with
superconducting fluctuations reflecting both the σ and π bands. In
particular, the upturn field Hup in the magnetization curve, related to the
incipient effect of the magnetic field in quenching the fluctuating pairs,
displays a double structure, in correspondence to two correlation lengths. The
experimental findings are satisfactorily described by the extension to the
diamagnetism of a recent theory for paraconductivity, in the framework of a
zero-dimensional model for the fluctuating superconducting droplets above Tc
- …