41 research outputs found
Benchmarking analysis of digital light processing resins in terms of dimensional accuracy and geometric tolerances
Additive Manufacturing (AM) is a groundbreaking fabrication technology that is revolutionizing traditional manufacturing processes. Generally, following a layer-by-layer approach, in AM the final shape of the product is built through the progressive deposition of one or more materials. The most common extrusion-based AM technique for thermoplastic polymers is Fused Filament Fabrication (FFF), whilst for photopolymer resins, Digital Light Processing (DLP) and Stereolithography (SLA) are widely used. In the last years, DLP has spread rapidly, due to its low average cost and simple use. Moreover, a lower layer thickness can be used in DLP if compared to the FFF process. Therefore, hobbyists or amateur end users and many companies use DLP to achieve high dimensional accuracy and smooth surfaces for small products.
This work aims to evaluate the performance of three different DLP resins in terms of dimensional and geometrical accuracy. A benchmarking activity is carried out using a Rover printer by Sharebot to produce replicas of a reference part using Sharebot resins. After production, the replicas were inspected using a Coordinate Measuring Machine (CMM) for comparing the dimensional accuracy of the geometric features according to ISO IT grades and tolerances of the GD&T system. The results of this study are also compared with previous works from the literature in the conclusions
An approach to evaluate the wear of customized manufacturing fixtures through the analysis of 3D scan data
With the recent gain in popularity and adoption of additive manufacturing in various industrial sectors, quality assessments to determine the functionality of 3D printed parts are critical. This holds especially when the parts are subjected to wear as in the case of the production of customized fixtures. Some reinforced polymeric materials for additive manufacturing can be employed as a substitute for low-resistance metals like Aluminium. In this paper, a custom-made tribometer was used to simulate the wear of 3D printed fixtures of Alumide material for sheet metal inspection operations. Contact 3D scanning is used to monitor the condition of the fixture for increasing numbers of wear cycles. This study aims to calculate the wear volume of cylindrical pins starting from the surface points of 3D scan data. The methodology employs alpha shapes to obtain the progression of the volume and area of the worn zone. Experimental tests to evaluate the wear volume were carried out to compare the durability of Alumide to that of Aluminium, filling the gap of previous literature, which had focused exclusively on diametral wear. The findings indicate a better wear resistance for Alumide specimens and this work contributes to broadening the knowledge about the wear behaviour and the lifetime of 3D printed parts
Low energy radioactive ion beams at SPES for nuclear physics and medical applications
Over the past decades many accelerator facilities have been built in order to produce radioactive nuclei. Among the falcility under construction, SPES (Selective Production of Exotic Species) is the Italian ISOL (Isotope Separation On Line) facility in the installation phase in these years in the Laboratori Nazionali di Legnaro. The innovative aspect of this facility is that the radioactive beam produced by fission induced by the proton beam, produced by a high power cyclotron, interact with a multi-disks uranium carbide target. The formed RIB will be sent directly to the low energy experimental area and, afterwards, to the post-acceleration complex. Currently
the installation program concerning the SPES RIB source provides the set-up of the apparatus around the production bunker. The main objective of SPES project is to provide, in the next years, the first low-energy radioactive beams for beta decay experiments using the b-DS (beta Decay Station) set-up and for radiopharmaceutical applications by means of the IRIS (ISOLPHARM Radioactive Implantation Station) apparatus. In this work, all the specific issues related to the SPES RIB and the Low Energy beam lines will be reported. The main RIB systems, such as ion source systems, target-handling devices and the installation of low energy transport line, will be
presented in detail
A 62 MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN (CATANIA)
At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported
A Novel Approach to β-Decay: PANDORA, a New Experimental Setup for Future in-Plasma Measurements
Theoretical predictions as well as experiments performed at storage rings have shown that the lifetimes of β-radionuclides can change significantly as a function of the ionization state. In this paper we describe an innovative approach, based on the use of a compact plasma trap to emulate selected stellar-like conditions. It has been proposed within the PANDORA project (Plasmas for Astrophysics, Nuclear Decay Observation and Radiation for Archaeometry) with the aim to measure, for the first time in plasma, nuclear β-decay rates of radionuclides involved in nuclear-astrophysics processes. To achieve this task, a compact magnetic plasma trap has been designed to reach the needed plasma densities, temperatures, and charge-states distributions. A multi-diagnostic setup will monitor, on-line, the plasma parameters, which will be correlated with the decay rate of the radionuclides. The latter will be measured through the detection of the γ-rays emitted by the excited daughter nuclei following the β-decay. An array of 14 HPGe detectors placed around the trap will be used to detect the emitted γ-rays. For the first experimental campaign three isotopes,176Lu,134Cs, and94Nb, were selected as possible physics cases. The newly designed plasma trap will also represent a tool of choice to measure the plasma opacities in a broad spectrum of plasma conditions, experimentally poorly known but that have a great impact on the energy transport and spectroscopic observations of many astrophysical objects. Status and perspectives of the project will be highlighted in the paper
The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay
The article describes the main achievements of the NUMEN project togetherwith an updated and detailed overview of the related R&D activities andtheoretical developments. NUMEN proposes an innovative technique to access thenuclear matrix elements entering the expression of the lifetime of the doublebeta decay by cross section measurements of heavy-ion induced Double ChargeExchange (DCE) reactions. Despite the two processes, namely neutrinoless doublebeta decay and DCE reactions, are triggered by the weak and strong interactionrespectively, important analogies are suggested. The basic point is thecoincidence of the initial and final state many-body wave-functions in the twotypes of processes and the formal similarity of the transition operators. Firstexperimental results obtained at the INFN-LNS laboratory for the40Ca(18O,18Ne)40Ar reaction at 270 MeV, give encouraging indication on thecapability of the proposed technique to access relevant quantitativeinformation. The two major aspects for this project are the K800Superconducting Cyclotron and MAGNEX spectrometer. The former is used for theacceleration of the required high resolution and low emittance heavy ion beamsand the latter is the large acceptance magnetic spectrometer for the detectionof the ejectiles. The use of the high-order trajectory reconstructiontechnique, implemented in MAGNEX, allows to reach the experimental resolutionand sensitivity required for the accurate measurement of the DCE cross sectionsat forward angles. However, the tiny values of such cross sections and theresolution requirements demand beam intensities much larger than manageablewith the present facility. The on-going upgrade of the INFN-LNS facilities inthis perspective is part of the NUMEN project and will be discussed in thearticle