684 research outputs found
Rayleigh-Taylor instability under an inclined plane
We revisit the canonical Rayleigh-Taylor instability and investigate the case
of a thin film of fluid upon the underside of an inclined plane. The presence
of a natural flow along the plane competes with the conventional droplet
forming instability. In particular, experiments reveal that no drops form for
inclinations greater than a critical value. These features are rationalized in
the context of the absolute/convective analysis conducted in this article
Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu
Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations
Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance
Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste
CO emission from shock and PDR in C-rich PN and post-AGB objects
The LWS full grating scans of the PN, NGC 7027, and post-AGB objects, GL618 and GL2688 reveal a forest of lines which are identified as CO rotational lines. These lines are used as diagnostics for warm gas around these objects. For NGC 7027 and GL 618, the hot central star is the source of the ionizing photons, creating a PDR. GL2688 is a cooler post-AGB star with evidence of a fast wind which results in shock heated gas. From the CO observations, we can estimate the density of the molecular layer. In agreement with earlier work, we found that the molecular layer is warm (T~ 350-600 K) and dense (n~ 107 cm-3). This may have implications on mass loss during the last stage of the evolution before stars evolve off the AGB
Continuous macroscopic limit of a discrete stochastic model for interaction of living cells
In the development of multiscale biological models it is crucial to establish
a connection between discrete microscopic or mesoscopic stochastic models and
macroscopic continuous descriptions based on cellular density. In this paper a
continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded
volume is derived, describing cells moving in a medium and reacting to each
other through both direct contact and long range chemotaxis. The continuous
macroscopic model is obtained as a Fokker-Planck equation describing evolution
of the cell probability density function. All coefficients of the general
macroscopic model are derived from parameters of the CPM and a very good
agreement is demonstrated between CPM Monte Carlo simulations and numerical
solution of the macroscopic model. It is also shown that in the absence of
contact cell-cell interactions, the obtained model reduces to the classical
macroscopic Keller-Segel model. General multiscale approach is demonstrated by
simulating spongy bone formation from loosely packed mesenchyme via the
intramembranous route suggesting that self-organizing physical mechanisms can
account for this developmental process.Comment: 4 pages, 3 figure
Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC
In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material
The Non-thermal Radio Jet Toward the NGC 2264 Star Formation Region
We report sensitive VLA 3.6 cm radio observations toward the head of the Cone
nebula in NGC 2264, made in 2006. The purpose of these observations was to
study a non-thermal radio jet recently discovered, that appears to emanate from
the head of the Cone nebula. The jet is highly polarized, with well-defined
knots, and one-sided. The comparison of our images with 1995 archive data
indicates no evidence of proper motions nor polarization changes. We find
reliable flux density variations in only one knot, which we tentatively
identify as the core of a quasar or radio galaxy. An extragalactic location
seems to be the best explanation for this jet.Comment: 12 pages, 5 figure
- …