973 research outputs found
Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons
We have quantified collisional losses, decoherence and the collision shift in
a one-dimensional optical lattice clock with bosonic 88Sr. The lattice clock is
referenced to the highly forbidden transition 1S0 - 3P0 at 698 nm, which
becomes weakly allowed due to state mixing in a homogeneous magnetic field. We
were able to quantify three decoherence coefficients, which are due to
dephasing collisions, inelastic collisions between atoms in the upper and lower
clock state, and atoms in the upper clock state only. Based on the measured
coefficients, we determine the operation parameters at which a 1D-lattice clock
with 88Sr shows no degradation due to collisions on the relative accuracy level
of 10-16.Comment: 4 pages, 3 figure
When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs
Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough
surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad
epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was
done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal
scales. It was shown that frogs can stick 2–3 times better on small scale roughnesses (3–6 µm asperities), producing higher adhesive
and frictional forces, but relatively poorly on the larger scale roughnesses tested (58.5–562.5 µm asperities). Our experiments
suggested that, on such surfaces, the pads secrete insufficient fluid to fill the space under the pad, leaving air pockets that would
significantly reduce the Laplace pressure component of capillarity. Therefore, we measured how well the adhesive toe pad would
conform to spherical asperities of known sizes using interference reflection microscopy. Based on experiments where the conformation
of the pad to individual asperities was examined microscopically, our calculations indicate that the pad epithelium has a low
elastic modulus, making it highly deformable
- …