6 research outputs found
Thraustochytrids as novel parasitic protists of marine free-living flatworms: Thraustochytrium caudivorum sp. nov. parasitizes Macrostomum lignano
The Labyrinthulomycota are a relatively poorly studied group of heterotrophic unicellular eukaryotes. They comprise three lineages, labyrinthulids, thraustochytrids, and aplanochytrids, which are all primarily marine organisms and considered to be important components of marine microbial communities. Recently a number of Labyrinthulomycota have been implicated as parasites of marine (but also terrestrial) plants and marine molluscs. Here we describe a new species of thraustochytrid, Thraustochytrium caudivorum sp. nov. that we have isolated from laboratory cultures of Macrostomum lignano (Rhabditophora, Macrostomorpha), a marine free-living flatworm. In these worms T. caudivorum can cause lesions, which start at the tip of the tail plate and which can lead to the dissolution of the posterior part of the animal. Although the worms can frequently cure these lesions and regenerate the lost parts, the lesions can also result in the complete dissolution of the animal. We describe this thraustochytrid based on pure agar cultures and infestations in the worm cultures. Moreover, we describe its pathological effects on the worms and its morphology using both light and electron microscopy. In addition, we report a phylogenetic analysis using a partial 18S rDNA sequence that allows us to place this new species within the thraustochytrids. Finally, we outline a protocol that allows to permanently remove the parasites from infested worm cultures. We conclude that thraustochytrids represent a novel group of parasites of free-living flatworm
Thraustochytrids as novel parasitic protists of a marine free-living flatworm : Thraustochytrium caudivorum sp. nov. parasitizes Macrostomum lignano
The Labyrinthulomycota are a relatively poorly studied group of heterotrophic unicellular eukaryotes. They comprise three lineages, labyrinthulids, thraustochytrids, and aplanochytrids, which are all primarily marine organisms and considered to be important components of marine microbial communities. Recently a number of Labyrinthulomycota have been implicated as parasites of marine (but also terrestrial) plants and marine molluscs. Here we describe a new species of thraustochytrid, Thraustochytrium caudivorum sp. nov. that we have isolated from laboratory cultures of Macrostomum lignano (Rhabditophora, Macrostomorpha), a marine free-living flatworm. In these worms T. caudivorum can cause lesions, which start at the tip of the tail plate and which can lead to the dissolution of the posterior part of the animal. Although the worms can frequently cure these lesions and regenerate the lost parts, the lesions can also result in the complete dissolution of the animal. We describe this thraustochytrid based on pure agar cultures and infestations in the worm cultures. Moreover, we describe its pathological effects on the worms and its morphology using both light and electron microscopy. In addition, we report a phylogenetic analysis using a partial 18S rDNA sequence that allows us to place this new species within the thraustochytrids. Finally, we outline a protocol that allows to permanently remove the parasites from infested worm cultures. We conclude that thraustochytrids represent a novel group of parasites of free-living flatworms
Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications
Human spiral ganglion (SG) neurons show remarkable survival properties and maintain electric excitability for a long time after complete deafness and even separation from the organ of Corti, features essential for cochlear implantation. Here, we analyze and compare the localization and distribution of gap junction (GJ) intercellular channels and connexin 43 (Cx43) in cells surrounding SG cell bodies in man and guinea pig by using transmission electron microscopy and confocal immunohistochemistry. GJs and Cx43 expression has been recognized in satellite glial cells (SGCs) in non-myelinating sensory ganglia including the human SG. In man, SG neurons can survive as mono-polar or "amputated" cells with unbroken central projections following dendrite degeneration and consolidation of the dendrite pole. Cx43-mediated GJ signaling between SGCs is believed to play a key role in this "healing" process and could explain the unique preservation of human SG neurons and the persistence of cochlear implant function
Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications
Human spiral ganglion (SG) neurons show remarkable survival properties and maintain electric excitability for a long time after complete deafness and even separation from the organ of Corti, features essential for cochlear implantation. Here, we analyze and compare the localization and distribution of gap junction (GJ) intercellular channels and connexin 43 (Cx43) in cells surrounding SG cell bodies in man and guinea pig by using transmission electron microscopy and confocal immunohistochemistry. GJs and Cx43 expression has been recognized in satellite glial cells (SGCs) in non-myelinating sensory ganglia including the human SG. In man, SG neurons can survive as mono-polar or "amputated" cells with unbroken central projections following dendrite degeneration and consolidation of the dendrite pole. Cx43-mediated GJ signaling between SGCs is believed to play a key role in this "healing" process and could explain the unique preservation of human SG neurons and the persistence of cochlear implant function
Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery
Cell specific targeting is an emerging field in nanomedicine. Homing of the multifunctional nanoparticles (MFNPs) is achieved by the conjugation of targeting moieties on the nanoparticle surface. The inner ear is an attractive target for new drug delivery strategies as it is hard to access and hearing loss is a significant worldwide problem. In this work we investigated the utility of a Nerve Growth Factor-derived peptide (hNgf_EE) functionalized nanoparticles (NPs) to target cells of the inner ear. These functionalized NPs were introduced to organotypic explant cultures of the mouse inner ear and to PC-12 rat pheochromocytoma cells. The NPs did not show any signs of toxicity. Specific targeting and higher binding affinity to spiral ganglion neurons, Schwann cells and nerve fibers of the explant cultures were achieved through ligand mediated multivalent binding to tyrosine kinase receptors and to p75 neurotrophin receptors. Unspecific uptake of NPs was investigated using NPs conjugated with scrambled hNgf_EE peptide. Our results indicate a selective cochlear cell targeting by MFNPs, which may be a potential tool for cell specific drug and gene delivery to the inner ea