591 research outputs found

    Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC

    Get PDF
    Background The aim of the present study was to evaluate the predictive value of a novel quantitative measure for the spatial heterogeneity of FDG uptake, the asphericity (ASP) in patients with non-small cell lung cancer (NSCLC). Methods FDG-PET/CT had been performed in 60 patients (15 women, 45 men; median age, 65.5 years) with newly diagnosed NSCLC prior to therapy. The FDG-PET image of the primary tumor was segmented using the ROVER 3D segmentation tool based on thresholding at the volume-reproducing intensity threshold after subtraction of local background. ASP was defined as the relative deviation of the tumor’s shape from a sphere. Univariate and multivariate Cox regression as well as Kaplan-Meier (KM) analysis and log-rank test with respect to overall (OAS) and progression-free survival (PFS) were performed for clinical variables, SUVmax/mean, metabolically active tumor volume (MTV), total lesion glycolysis (TLG), ASP and “solidity”, another measure of shape irregularity. Results ASP, solidity and “primary surgical treatment” were significant independent predictors of PFS in multivariate Cox regression with binarized parameters (HR, 3.66; p < 0.001, HR, 2.11; p = 0.05 and HR, 2.09; p = 0.05), ASP and “primary surgical treatment” of OAS (HR, 3.19; p = 0.02 and HR, 3.78; p = 0.01, respectively). None of the other semi-quantitative PET parameters showed significant predictive value with respect to OAS or PFS. Kaplan-Meier analysis revealed a probability of 2-year PFS of 52% in patients with low ASP compared to 12% in patients with high ASP (p < 0.001). Furthermore, it showed a higher OAS rate in the case of low versus high ASP (1-year-OAS, 91% vs. 67%: p = 0.02). Conclusions The novel parameter asphericity of pretherapeutic FDG uptake seems to provide better prognostic value for PFS and OAS in NCSLC compared to SUV, metabolic tumor volume, total lesion glycolysis and solidity

    Expression of the T Cell Receptor αβ on a CD123+ BDCA2+ HLA-DR+ Subpopulation in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Human Plasmacytoid Dendritic Cells (PDCs) infiltrating solid tumor tissues and draining lymph nodes of Head and Neck Squamous Cell Carcinoma (HNSCC) show an impaired immune response. In addition to an attenuated secretion of IFN-α little is known about other HNSCC-induced functional alterations in PDCs. Particular objectives in this project were to gain new insights regarding tumor-induced phenotypical and functional alterations in the PDC population. We showed by FACS analysis and RT-PCR that HNSCC orchestrates an as yet unknown subpopulation exhibiting functional autonomy in-vitro and in-vivo besides bearing phenotypical resemblance to PDCs and T cells. A subset, positive for the PDC markers CD123, BDCA-2, HLA-DR and the T cell receptor αβ (TCR-αβ) was significantly induced subsequent to stimulation with HNSCC in-vitro (p = 0.009) and also present in metastatic lymph nodes in-vivo. This subgroup could be functionally distinguished due to an enhanced production of IL-2 (p = 0.02), IL-6 (p = 0.0007) and TGF-β (not significant). Furthermore, after exposure to HNSCC cells, mRNA levels revealed a D-J-beta rearrangement of the TCR-beta chain besides a strong enhancement of the CD3ε chain in the PDC population. Our data indicate an interface between the PDC and T cell lineage. These findings will improve our understanding of phenotypical and functional intricacies concerning the very heterogeneous PDC population in-vivo

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    The Acoustic Module for the IceCube Upgrade

    Get PDF
    • …
    corecore