13 research outputs found
Adaptive Identification of Cortical and Subcortical Imaging Markers of Early Life Stress and Posttraumatic Stress Disorder
Posttraumatic stress disorder (PTSD) is a heterogeneous condition associated with a range of brain imaging abnormalities. Early life stress (ELS) contributes to this heterogeneity, but we do not know how a history of ELS influences traditionally defined brain signatures of PTSD. Here, we used a novel machine learning method – evolving partitions to improve classification (EPIC) – to identify shared and unique structural neuroimaging markers of ELS and PTSD in 97 combat-exposed military veterans.
METHODS:
We used EPIC with repeated cross-validation (CV) to determine how combinations of cortical thickness, surface area, and subcortical brain volumes could contribute to classification of PTSD (n = 40) versus controls (n = 57), and classification of ELS within the PTSD (ELS+ n = 16; ELS− n = 24) and control groups (ELS+ n = 16; ELS− n = 41). Additional inputs included intracranial volume, age, sex, adult trauma, and depression.
RESULTS:
On average, EPIC classified PTSD with 69% accuracy (SD = 5%), and ELS with 64% accuracy in the PTSD group (SD = 10%), and 62% accuracy in controls (SD = 6%). EPIC selected unique sets of individual features that classified each group with 75–85% accuracy in post hoc analyses; combinations of regions marginally improved classification from the individual atlas-defined brain regions. Across analyses, surface area in the right posterior cingulate was the only variable that was repeatedly selected as an important feature for classification of PTSD and ELS.
CONCLUSIONS:
EPIC revealed unique patterns of features that distinguished PTSD and ELS in this sample of combat-exposed military veterans, which may represent distinct biotypes of stress-related neuropathology
Classification of Major Depressive Disorder via Multi-Site Weighted LASSO Model
Large-scale collaborative analysis of brain imaging data, in psychiatry and neurology, offers a new source of statistical power to discover features that boost accuracy in disease classification, differential diagnosis, and outcome prediction. However, due to data privacy regulations or limited accessibility to large datasets across the world, it is challenging to efficiently integrate distributed information. Here we propose a novel classification framework through multi-site weighted LASSO: each site performs an iterative weighted LASSO for feature selection separately. Within each iteration, the classification result and the selected features are collected to update the weighting parameters for each feature. This new weight is used to guide the LASSO process at the next iteration. Only the features that help to improve the classification accuracy are preserved. In tests on data from five sites (299 patients with major depressive disorder (MDD) and 258 normal controls), our method boosted classification accuracy for MDD by 4.9% on average. This result shows the potential of the proposed new strategy as an effective and practical collaborative platform for machine learning on large scale distributed imaging and biobank data
Altered Cortical Brain Structure and Increased Risk for Disease Seen Decades After Perinatal Exposure to Maternal Smoking: A Study of 9000 Adults in the UK Biobank
Secondhand smoke exposure is a major public health risk that is especially harmful to the developing brain, but it is unclear if early exposure affects brain structure during middle age and older adulthood. Here we analyzed brain MRI data from the UK Biobank in a population-based sample of individuals (ages 44–80) who were exposed (n = 2510) or unexposed (n = 6079) to smoking around birth. We used robust statistical models, including quantile regressions, to test the effect of perinatal smoke exposure (PSE) on cortical surface area (SA), thickness, and subcortical volumes. We hypothesized that PSE would be associated with cortical disruption in primary sensory areas compared to unexposed (PSE−) adults. After adjusting for multiple comparisons, SA was significantly lower in the pericalcarine (PCAL), inferior parietal (IPL), and regions of the temporal and frontal cortex of PSE+ adults; these abnormalities were associated with increased risk for several diseases, including circulatory and endocrine conditions. Sensitivity analyses conducted in a hold-out group of healthy participants (exposed, n = 109, unexposed, n = 315) replicated the effect of PSE on SA in the PCAL and IPL. Collectively our results show a negative, long term effect of PSE on sensory cortices that may increase risk for disease later in life
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Family Composition and Expressions of Family-Focused Care Needs at an Academic Memory Disorders Clinic
Objective. To understand who dementia patients identify as their family and how dementia affects family life. Background. Dementia care is often delivered in family settings, so understanding the constituency and needs of the family unit involved in care is important for determining contributors to family quality of life. Design/Methods. Seventy-seven families receiving care at an academic dementia clinic completed questionnaires regarding the affected person and the family. Responses were categorized as focused on an individual’s needs or the family’s needs. Results. Respondents identified a mean of 3.77 family members involved in care. Spouse (80.5%), daughter (58.4%), son (46.8%), and stepchild or child-in-law (37.7%) were the most frequently listed family members. Questions regarding the effect of dementia-related changes in cognition and mood were most likely to elicit a family-focused response. Questionnaire items that inquired about specific medical questions and strategies to improve family function were least likely to elicit a family-focused response. Conclusions. Both caregivers and persons with dementia frequently provided family-focused responses, supporting the construct of dementia as an illness that affects life in the family unit. This finding reinforces the potential utility of family-centered quality of life measures in assessing treatment success for people with dementia
Adaptive Identification of Cortical and Subcortical Imaging Markers of Early Life Stress and Posttraumatic Stress Disorder
Posttraumatic stress disorder (PTSD) is a heterogeneous condition associated with a range of brain imaging abnormalities. Early life stress (ELS) contributes to this heterogeneity, but we do not know how a history of ELS influences traditionally defined brain signatures of PTSD. Here, we used a novel machine learning method – evolving partitions to improve classification (EPIC) – to identify shared and unique structural neuroimaging markers of ELS and PTSD in 97 combat-exposed military veterans.
METHODS:
We used EPIC with repeated cross-validation (CV) to determine how combinations of cortical thickness, surface area, and subcortical brain volumes could contribute to classification of PTSD (n = 40) versus controls (n = 57), and classification of ELS within the PTSD (ELS+ n = 16; ELS− n = 24) and control groups (ELS+ n = 16; ELS− n = 41). Additional inputs included intracranial volume, age, sex, adult trauma, and depression.
RESULTS:
On average, EPIC classified PTSD with 69% accuracy (SD = 5%), and ELS with 64% accuracy in the PTSD group (SD = 10%), and 62% accuracy in controls (SD = 6%). EPIC selected unique sets of individual features that classified each group with 75–85% accuracy in post hoc analyses; combinations of regions marginally improved classification from the individual atlas-defined brain regions. Across analyses, surface area in the right posterior cingulate was the only variable that was repeatedly selected as an important feature for classification of PTSD and ELS.
CONCLUSIONS:
EPIC revealed unique patterns of features that distinguished PTSD and ELS in this sample of combat-exposed military veterans, which may represent distinct biotypes of stress-related neuropathology
Estrogen, brain structure, and cognition in postmenopausal women
Declining estrogen levels before, during, and after menopause can affect memory and risk for Alzheimer's disease. Undesirable side effects of hormone variations emphasize a role for hormone therapy (HT) where possible benefits include a delay in the onset of dementia-yet findings are inconsistent. Effects of HT may be mediated by estrogen receptors found throughout the brain. Effects may also depend on lifestyle factors, timing of use, and genetic risk. We studied the impact of self-reported HT use on brain volume in 562 elderly women (71-94 years) with mixed cognitive status while adjusting for aforementioned factors. Covariate-adjusted voxelwise linear regression analyses using a model with 16 predictors showed HT use as positively associated with regional brain volumes, regardless of cognitive status. Examinations of other factors related to menopause, oophorectomy and hysterectomy status independently yielded positive effects on brain volume when added to our model. One interaction term, HTxBMI, out of several examined, revealed significant negative association with overall brain volume, suggesting a greater reduction in brain volume than BMI alone. Our main findings relating HT to regional brain volume were as hypothesized, but some exploratory analyses were not in line with existing hypotheses. Studies suggest lower levels of estrogen resulting from oophorectomy and hysterectomy affect brain volume negatively, and the addition of HT modifies the relation between BMI and brain volume positively. Effects of HT may depend on the age range assessed, motivating studies with a wider age range as well as a randomized design