387 research outputs found
Coexisting Pulses in a Model for Binary-Mixture Convection
We address the striking coexistence of localized waves (`pulses') of
different lengths which was observed in recent experiments and full numerical
simulations of binary-mixture convection. Using a set of extended
Ginzburg-Landau equations, we show that this multiplicity finds a natural
explanation in terms of the competition of two distinct, physical localization
mechanisms; one arises from dispersion and the other from a concentration mode.
This competition is absent in the standard Ginzburg-Landau equation. It may
also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded
Are You Awed Yet? How Virtual Reality Gives Us Awe and Goose Bumps
“Awe” is a category of emotion within the spectrum of self-transcendent experiences. Awe has wellness benefits, with feelings of social interconnectivity and increased life satisfaction. However, awe experiences remain rare in our everyday lives, and rarer in lab environments. We posit that Virtual Reality (VR) may help to make self-transcendent and potentially transformative experiences of awe more accessible to individuals. Here, we investigated how interactive VR as a positive technology may elicit awe, and how features of aesthetic beauty/scale, familiarity, and personalization (self-selection of travel destinations) may induce awe. In this mixed-methods study, participants used an interactive VR system to explore Earth from ground and orbit. We collected: introspective interviews and self-report questionnaires with participants’ experience of awe; information on personality traits and gender; and we recorded physiological goose bumps on the skin (using an arm-mounted goose bump camera instrument), which is a documented marker of an awe experience. Results showed that on a scale of 0–100 for self-reported awe, four different interactive VR environments yielded an average awe rating of 79.7, indicating that interactive VR can indeed induce awe. 43.8% of participants experienced goose bumps: awe ratings positively correlated with the occurrence of goose bumps with those who experienced goose bumps having showed significantly higher ratings of awe than those who did not. Most (64%) of the goose bumps occurred when participants self-selected their VR environment. Participant statements from the interviews were characteristic of an awe-inspiring experience, revealed themes of social connection, and usability problems with the VR interface. Personality traits yielded no clear correlation to awe ratings, and females appear to experience more goose bumps than males. In summary: (1) Interactive VR can elicit awe, especially within familiar, self-selected environments; (2) Physiological goose bumps can be recorded to provide reliable, non-intrusive indications of awe; (3) Care must be taken to design interaction interfaces that do not impede awe; and (4) While personality traits are not correlated to awe ratings, goose bumps were experienced more frequently among females. We aim to conduct future studies using custom VR environments, interfaces, and additional physiological measures to provide further insight into awe
Phase Diffusion in Localized Spatio-Temporal Amplitude Chaos
We present numerical simulations of coupled Ginzburg-Landau equations
describing parametrically excited waves which reveal persistent dynamics due to
the occurrence of phase slips in sequential pairs, with the second phase slip
quickly following and negating the first. Of particular interest are solutions
where these double phase slips occur irregularly in space and time within a
spatially localized region. An effective phase diffusion equation utilizing the
long term phase conservation of the solution explains the localization of this
new form of amplitude chaos.Comment: 4 pages incl. 5 figures uucompresse
Immersive Interactive Technologies for Positive Change: A Scoping Review and Design Considerations
Practices such as mindfulness, introspection, and self-reflection are known to have positive short and long-term effects on health and well-being. However, in today\u27s modern, fast-paced, technological world tempted by distractions these practices are often hard to access and relate to a broader audience. Consequently, technologies have emerged that mediate personal experiences, which is reflected in the high number of available applications designed to elicit positive changes. These technologies elicit positive changes by bringing users\u27 attention to the self—from technologies that show representation of quantified personal data, to technologies that provide experiences that guide the user closer in understanding the self. However, while many designs available today are either built to support or are informed by these aforementioned practices, the question remains: how can we most effectively employ different design elements and interaction strategies to support positive change? Moreover, what types of input and output modalities contribute to eliciting positive states? To address these questions, we present here a state of the art scoping review of immersive interactive technologies that serve in a role of a mediator for positive change in users. We performed a literature search using ACM Digital Library, Web of Science, IEEE Xplore, and Design and Applied Arts Index (beginning of literature—January 1, 2018). We retrieved English-language articles for review, and we searched for published and unpublished studies. Risk of bias was assessed with Downs and Black 26-item QAT scale. We included 34 articles as relevant to the literature, and the analysis of the articles resulted in 38 instances of 33 immersive, interactive experiences relating to positive human functioning. Our contribution is three-fold: First we provide a scoping review of immersive interactive technologies for positive change; Second, we propose both a framework for future designs of positive interactive technologies and design consideration informed by the comparative analysis of the designs; Third, we provide design considerations for immersive, interactive technologies to elicit positive states and support positive change
Detecting Spatial Orientation Demands during Virtual Navigation using EEG Brain Sensing
This study shows how brain sensing can offer insight to the evaluation of human spatial orientation in virtual reality (VR) and establish a role for electroencephalogram (EEG) in virtual navigation. Research suggests that the evaluation of spatial orientation in VR benefits by goingbeyond performance measures or questionnaires to measurements of the user’s cognitive state. While EEG has emerged as a practical brain sensing technology in cognitive research, spatial orientation tasks often rely on multiple factors (e.g., reference frame used, ability to update simulated rotation, and/or left-right confusion) which may be inaccessible to this measurement. EEG has been shown to correlate with human spatial orientation in previous research. In this paper, we use convolutional neural network (CNN), an advanced technique in machine learning, to train a detection model that can identify moments in which VR users experienced some increase in spatial orientation demands in real-time. Our results demonstrate that we can indeed use machine learning technique to detect such cognitive state of increasing spatial orientation demands in virtual reality research with 96% accurate on average
Attractive Interaction Between Pulses in a Model for Binary-Mixture Convection
Recent experiments on convection in binary mixtures have shown that the
interaction between localized waves (pulses) can be repulsive as well as {\it
attractive} and depends strongly on the relative {\it orientation} of the
pulses. It is demonstrated that the concentration mode, which is characteristic
of the extended Ginzburg-Landau equations introduced recently, allows a natural
understanding of that result. Within the standard complex Ginzburg-Landau
equation this would not be possible.Comment: 7 pages revtex with 3 postscript figures (uuencoded
Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?
Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a
non-monotonic dispersion relation. The effect of a parametric driving on such
waves is studied within suitable coupled Ginzburg-Landau equations. Due to the
non-monotonicity the neutral curve for the excitation of standing waves can
have up to three minima. The stability of the waves with respect to long-wave
perturbations is determined a phase-diffusion equation. It shows that the
band of stable wave numbers can split up into two or three sub-bands. The
resulting competition between the wave numbers corresponding to the respective
sub-bands leads quite naturally to patterns consisting of multiple domains of
standing waves which differ in their wave number. The coarsening dynamics of
such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to
PR
Modulation of Localized States in Electroconvection
We report on the effects of temporal modulation of the driving force on a
particular class of localized states, known as worms, that have been observed
in electroconvection in nematic liquid crystals. The worms consist of the
superposition of traveling waves and have been observed to have unique, small
widths, but to vary in length. The transition from the pure conduction state to
worms occurs via a backward bifurcation. A possible explanation of the
formation of the worms has been given in terms of coupled amplitude equations.
Because the worms consist of the superposition of traveling waves, temporal
modulation of the control parameter is a useful probe of the dynamics of the
system. We observe that temporal modulation increases the average length of the
worms and stabilizes worms below the transition point in the absence of
modulation.Comment: 4 pages, 4 figure
Geometric diagnostics of complex patterns: Spiral defect chaos
Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- BĂ©nard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components
Real human touch: performer-facilitated touch enhances presence and embodiment in immersive performance
Despite being an embodied medium, virtual reality (VR) prioritizes vision and sound over the other senses. While touch has been demonstrated to foster a sense of presence and embodiment, most haptic research in VR focuses on uncanny vibration motors or limited experiences of touch with simple props. Meanwhile, immersive performances such as Eve 3.0 incorporate performer- facilitated touch in novel ways to evoke a complete and social experience of human touch in VR. In response, we conducted a mixed-methods study to investigate the experience of performer-facilitated touch in a 360 video segment from the immersive performance Eve 3.0. Using a 3Ă—2 factorial design, we compared touch from a diary prop and performer in festival and laboratory settings. We found that performer-facilitated touch increased realistic behaviours and questionnaire measures of social presence, embodiment, and tactile realism. The setting also had a significant effect with festival participants demonstrating significantly more behaviours indicating presence, particularly in the no-touch condition. Participant descriptions reveal that in addition to touch, a rich narrative and vivid visuals of social interaction were just as important in immersing participants in the experience and making them feel present. We find that participant experiences are a co-creation situated at the intersection of artefact and context that require a willing suspension of disbelief. The authentic setting and performance artefact afforded a deep understanding of the rich and complex experience of human touch in immersive performance
- …