419 research outputs found
Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy
Hexagonal boron nitride (h-BN) is a layered two-dimensional material with
properties that make it promising as a dielectric in various applications. We
report the growth of h-BN films on Ni foils from elemental B and N using
molecular beam epitaxy. The presence of crystalline h-BN over the entire
substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used
to examine the morphology and continuity of the synthesized films. A scanning
electron microscopy study of films obtained using shorter depositions offers
insight into the nucleation and growth behavior of h-BN on the Ni substrate.
The morphology of h-BN was found to evolve from dendritic, star-shaped islands
to larger, smooth triangular ones with increasing growth temperature
Recommended from our members
The influence of Mg doping on the nucleation of self-induced GaN nanowires
GaN nanowires were grown without any catalyst by plasma-assisted molecular beam
epitaxy. Under supply of Mg, nanowire nucleation is faster, the areal density of
wires increases to a higher value, and nanowire coalescence is more pronounced
than without Mg. During nanowire nucleation the Ga desorption was monitored insitu
by line-of-sight quadrupolemass spectrometry for various substrate temperatures.
Nucleation energies of 4.0±0.3 eV and 3.2±0.3 eV without and with Mg supply were
deduced, respectively. This effect has to be taken into account for the fabrication of
nanowire devices and could be employed to tune the NW areal density
Regulation of Breeding Behavior: Do Energy-Demanding Periods Induce a Change in Prolactin or Corticosterone Baseline Levels in the Common Tern (Sterna hirundo)?
ABSTRACT Hormones are involved in reproductive decisions, linking environmental cues and body condition and adapting behavior. Mass loss is often accompanied by decreased prolactin and increased corticosterone concentrations, influencing incubation and brooding behavior and ultimately triggering nest desertion. Using blood-sucking bugs (Dipetalogaster maxima), we measured baseline prolactin, corticosterone, and ketone body values in incubating common terns (Sterna hirundo) between 2006 and 2009 during energy-demanding periods: 50 pairs were sampled hungry (after an incubation bout) and again fed (after foraging). In a second approach, we sampled 57 other pairs (experienced and inexperienced birds) three times over their individual breeding period, because reproduction, especially chick rearing, is a very energy-demanding process. In line with the common physiological pattern of fasting, we found significantly lower baseline prolactin values in hungry terns, which were negatively related to mass loss over the incubation bout, whereas corticosterone and ketone body levels were marginally increased. Compared to that in the incubation phase, the prolactin level dropped after hatching of chicks in inexperienced birds, perhaps indicating lower parental expenditure. Corticosterone, on the other hand, increased after hatching in males, probably linked to higher foraging activity, as males mainly deliver food during the first days. These energy-demanding periods clearly influenced hormones and ketone bodies, maybe reinforced by the low energy margin of this small seabird species, but energy reserves were not depleted to a level affecting behavior or reproductive success
The MICADO first light imager for ELT: its astrometric performance
We report on our ongoing efforts to ensure that the MICADO NIR imager reaches
differential absolute (often abbreviated: relative) astrometric performance
limited by the SNR of typical observations. The exceptional 39m diameter
collecting area in combination with a powerful multi-conjugate adaptive optics
system (called MAORY) brings the nominal centroiding error, which scales as
FWHM/SNR, down to a few 10 uas. Here we show that an exceptional effort is
needed to provide a system which delivers adequate and calibrateable
astrometric performance over the full field of view (up to 53 arcsec diameter).Comment: 5 pages, submitted to SPIE 2018 Astronomical Telescopes +
Instrumentatio
Recommended from our members
GaN-based radial heterostructure nanowires grown by MBE and ALD
A combination of molecular beam epitaxy (MBE) and atomic layer deposition (ALD) was adopted to fabricate GaN-based core/shell NW structures. ALD was used to deposit a HfO2 shell of onto the MBE grown GaN NWs. Electron transparent samples were prepared by focussed ion beam methods and characterized using state-of-the-art analytical transmission and scanning transmission electron microscopy. The polycrystalline coating was found to be uniform along the whole length of the NWs. Photoluminescence and Raman spectroscopy analysis confirms that the HfO2 ALD coating does not add any structural defect when deposited on the NWs
Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
Scaling graphene down to nanoribbons is a promising route for the implementation of this material into devices. Quantum confinement of charge carriers in such nanostructures, combined with the electric field-induced break of symmetry in AB-stacked bilayer graphene, leads to a band gap wider than that obtained solely by this symmetry breaking. Consequently, the possibility of fabricating AB-stacked bilayer graphene nanoribbons with high precision is very attractive for the purposes of applied and basic science. Here we show a method, which includes a straightforward air annealing, for the preparation of quasi-free-standing AB-bilayer nanoribbons with different widths on SiC(0001). Furthermore, the experiments reveal that the degree of disorder at the edges increases with the width, indicating that the narrower nanoribbons are more ordered in their edge termination. In general, the reported approach is a viable route towards the large-scale fabrication of bilayer graphene nanostructures with tailored dimensions and properties for specific applications
Metal - Insulator transition driven by vacancy ordering in GeSbTe phase change materials
Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows
Metal - Insulator transition driven by vacancy ordering in GeSbTe phase change materials
Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphousto-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows
- …