32 research outputs found

    Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in <it>Medicago truncatula</it>.</p> <p>Results</p> <p>This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in <it>M. truncatula</it>. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene.</p> <p>Conclusions</p> <p>This study shows that <it>Medicago truncatula </it>contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.</p

    Entwicklung von tumorhemmenden Polymer-Wirkstoff-Konjugaten des Zytostatikums Methotrexat auf der Basis von linearem Polyethylenglykol

    No full text
    Methotrexat is a very efficient anti-tumor agens. Its conjugates with PEG have been prepared and their cytotoxic effects have been proven in this doctor thesis by cell culture studies.Available from: http://www.freidok.uni-freiburg.de/volltexte/507 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Synthesis, cleavage profile, and antitumor efficacy of an albumin-binding prodrug of methotrexate that is cleaved by plasmin and cathepsin B

    No full text
    Cathepsin B and plasmin are intra- or extracellular proteases that are overexpressed by several solid tumors. In order to exploit both proteases as molecular targets for tumor-specific cleavage of prodrugs, an albumin-binding formulation of methotrexate was developed that incorporated the peptide sequence D-Ala-Phe-Lys as the protease substrate. Albumin is a suitable carrier for cytostatic agents due to passive accumulation in solid tumors. Synthesis was performed by coupling the peptide linker EMC-D-Ala-Phe-Lys(Boc)-Lys-OH (EMC = epsilon-maleimidocaproic acid) to the gamma-COOH group of alpha-tert-butyl protected methotrexate. After cleavage of the protective groups and purification on reverse phase HPLC, a highly water-soluble methotrexate-peptide derivative was obtained that binds rapidly and selectively to human serum albumin. The albumin-bound form of the prodrug was shown to be efficiently cleaved by cathepsin B and plasmin as well as in an ovarian carcinoma homogenate (OVCAR-3) liberating a methotrexate-lysine derivative. In an OVCAR-3 xenograft model, the prodrug at a dose of 4x15 mg/kg methotrexate equivalents demonstrated distinctly superior antitumor efficacy compared to free methotrexate at a dose of 4x100 mg/kg [T/C(%) for MTX = 69; T/C(%) for MTX prodrug = 29]. The data provide a further proof of concept for the development of albumin-binding, enzymatically cleavable prodrugs of anticancer drugs
    corecore