219 research outputs found

    GMOs: Non-Health Issues

    Get PDF
    The controversy over genetically modified [GM] organisms is often framed in terms of possible hazards for human health. Articles in a previous volume of this *Encyclopedia* give a general overview of GM crops [@Mulvaney2014] and specifically examine human health [@Nordgard2014] and labeling [@Bruton2014] issues surrounding GM organisms. This article explores several other aspects of the controversy: environmental concerns, political and legal disputes, and the aim of "feeding the world" and promoting food security. Rather than discussing abstract, hypothetical GM organisms, this article explores the consequences of the GM organisms that have actually been deployed in the particular contexts that they have been deployed, on the belief that there is little point in discussing GM organisms in an idealized or context-independent way

    Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    Get PDF
    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh

    Machine Learning Visualization Tool for Exploring Parameterized Hydrodynamics

    Full text link
    We are interested in the computational study of shock hydrodynamics, i.e. problems involving compressible solids, liquids, and gases that undergo large deformation. These problems are dynamic and nonlinear and can exhibit complex instabilities. Due to advances in high performance computing it is possible to parameterize a hydrodynamic problem and perform a computational study yielding O(TB)\mathcal{O}\left({\rm TB}\right) of simulation state data. We present an interactive machine learning tool that can be used to compress, browse, and interpolate these large simulation datasets. This tool allows computational scientists and researchers to quickly visualize "what-if" situations, perform sensitivity analyses, and optimize complex hydrodynamic experiments

    Suppression of Richtmyer-Meshkov instability via special pairs of shocks and phase transitions

    Full text link
    The classical Richtmyer-Meshkov instability is a hydrodynamic instability characterizing the evolution of an interface following shock loading. In contrast to other hydrodynamic instabilities such as Rayleigh-Taylor, it is known for being unconditionally unstable: regardless of the direction of shock passage, any deviations from a flat interface will be amplified. In this article, we show that for negative Atwood numbers, there exist special sequences of shocks which result in a nearly perfectly suppressed instability growth. We demonstrate this principle computationally and experimentally with stepped fliers and phase transition materials. A fascinating immediate corollary is that in specific instances a phase transitioning material may self-suppress RMI
    corecore