108 research outputs found

    Coughing May Lead to Spontaneous Chylothorax and Chylous Ascites

    Get PDF
    Chylous ascites is a rare form of ascites resulting from the accumulation of lymph in the abdominal cavity. It is due to an interruption in the lymphatic system. Surgical management is indicated in cases of recurrence or failure after conservative treatment. We report a case of spontaneous chylous peritonitis after chylothorax, which is a rare clinical event. The primary reason was unclear and the outcome of medical and surgical treatment was successful

    Chylous ascites as the main manifestation of left ventricular dysfunction: a case report

    Get PDF
    BACKGROUND: Ascites is one of the most common complications of liver diseases, even though in 15% of the cases it is related to extrahepatic diseases; 3% are of cardiac nature and they appear associated with signs and symptoms of heart failure. CASE PRESENTATION: A 70 year old man was admitted with more than one year history of abdominal distension and a weight gain of 10 kilograms. He is asymptomatic and walks 2000–3000 meters a day without angor or dyspnea. The physical examination shows moderate abdominal distension, with no hepatosplenomegaly or edema, and there is mild jugular vein distension. The studies performed (complete laboratory work up, paracentesis, liver biopsy, echocardiogram, intrahepatic pressure measurements, etc.) showed a chylous ascites related to portal hypertension, and left ventricular dysfunction was the only probable cause found. CONCLUSION: Asymptomatic heart dysfunction can mimic liver disease and should be kept in mind as a cause of chylous ascites

    Effects of immunosuppressive drugs on COVID-19 severity in patients with autoimmune hepatitis

    Get PDF
    Background: We investigated associations between baseline use of immunosuppressive drugs and severity of Coronavirus Disease 2019 (COVID-19) in autoimmune hepatitis (AIH). Patients and methods: Data of AIH patients with laboratory confirmed COVID-19 were retrospectively collected from 15 countries. The outcomes of AIH patients who were on immunosuppression at the time of COVID-19 were compared to patients who were not on AIH medication. The clinical courses of COVID-19 were classified as (i)-no hospitalization, (ii)-hospitalization without oxygen supplementation, (iii)-hospitalization with oxygen supplementation by nasal cannula or mask, (iv)-intensive care unit (ICU) admission with non-invasive mechanical ventilation, (v)-ICU admission with invasive mechanical ventilation or (vi)-death and analysed using ordinal logistic regression. Results: We included 254 AIH patients (79.5%, female) with a median age of 50 (range, 17-85) years. At the onset of COVID-19, 234 patients (92.1%) were on treatment with glucocorticoids (n = 156), thiopurines (n = 151), mycophenolate mofetil (n = 22) or tacrolimus (n = 16), alone or in combinations. Overall, 94 (37%) patients were hospitalized and 18 (7.1%) patients died. Use of systemic glucocorticoids (adjusted odds ratio [aOR] 4.73, 95% CI 1.12-25.89) and thiopurines (aOR 4.78, 95% CI 1.33-23.50) for AIH was associated with worse COVID-19 severity, after adjusting for age-sex, comorbidities and presence of cirrhosis. Baseline treatment with mycophenolate mofetil (aOR 3.56, 95% CI 0.76-20.56) and tacrolimus (aOR 4.09, 95% CI 0.69-27.00) were also associated with more severe COVID-19 courses in a smaller subset of treated patients. Conclusion: Baseline treatment with systemic glucocorticoids or thiopurines prior to the onset of COVID-19 was significantly associated with COVID-19 severity in patients with AIH.Fil: Efe, Cumali. Harran University Hospita; TurquíaFil: Lammert, Craig. University School of Medicine Indianapolis; Estados UnidosFil: Taşçılar, Koray. Universitat Erlangen-Nuremberg; AlemaniaFil: Dhanasekaran, Renumathy. University of Stanford; Estados UnidosFil: Ebik, Berat. Gazi Yasargil Education And Research Hospital; TurquíaFil: Higuera de la Tijera, Fatima. Hospital General de México; MéxicoFil: Calışkan, Ali R.. No especifíca;Fil: Peralta, Mirta. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Gerussi, Alessio. Università degli Studi di Milano; ItaliaFil: Massoumi, Hatef. No especifíca;Fil: Catana, Andreea M.. Harvard Medical School; Estados UnidosFil: Purnak, Tugrul. University of Texas; Estados UnidosFil: Rigamonti, Cristina. Università del Piemonte Orientale ; ItaliaFil: Aldana, Andres J. G.. Fundacion Santa Fe de Bogota; ColombiaFil: Khakoo, Nidah. Miami University; Estados UnidosFil: Nazal, Leyla. Clinica Las Condes; ChileFil: Frager, Shalom. Montefiore Medical Center; Estados UnidosFil: Demir, Nurhan. Haseki Training And Research Hospital; TurquíaFil: Irak, Kader. Kanuni Sultan Suleyman Training And Research Hospital; TurquíaFil: Melekoğlu Ellik, Zeynep. Ankara University Medical Faculty; TurquíaFil: Kacmaz, Hüseyin. Adıyaman University; TurquíaFil: Balaban, Yasemin. Hacettepe University; TurquíaFil: Atay, Kadri. No especifíca;Fil: Eren, Fatih. No especifíca;Fil: Alvares da-Silva, Mario R.. Universidade Federal do Rio Grande do Sul; BrasilFil: Cristoferi, Laura. Università degli Studi di Milano; ItaliaFil: Urzua, Álvaro. Universidad de Chile; ChileFil: Eşkazan, Tuğçe. Cerrahpaşa School of Medicine; TurquíaFil: Magro, Bianca. No especifíca;Fil: Snijders, Romee. No especifíca;Fil: Barutçu, Sezgin. No especifíca;Fil: Lytvyak, Ellina. University of Alberta; CanadáFil: Zazueta, Godolfino M.. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Demirezer Bolat, Aylin. Ankara City Hospital; TurquíaFil: Aydın, Mesut. Van Yuzuncu Yil University; TurquíaFil: Amorós Martín, Alexandra Noemí. No especifíca;Fil: De Martin, Eleonora. No especifíca;Fil: Ekin, Nazım. No especifíca;Fil: Yıldırım, Sümeyra. No especifíca;Fil: Yavuz, Ahmet. No especifíca;Fil: Bıyık, Murat. Necmettin Erbakan University; TurquíaFil: Narro, Graciela C.. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Bıyık, Murat. Uludag University; TurquíaFil: Kıyıcı, Murat. No especifíca;Fil: Kahramanoğlu Aksoy, Evrim. No especifíca;Fil: Vincent, Maria. No especifíca;Fil: Carr, Rotonya M.. University of Pennsylvania; Estados UnidosFil: Günşar, Fulya. No especifíca;Fil: Reyes, Eira C.. Hepatology Unit. Hospital Militar Central de México; MéxicoFil: Harputluoğlu, Murat. Inönü University School of Medicine; TurquíaFil: Aloman, Costica. Rush University Medical Center; Estados UnidosFil: Gatselis, Nikolaos K.. University Hospital Of Larissa; GreciaFil: Üstündağ, Yücel. No especifíca;Fil: Brahm, Javier. Clinica Las Condes; ChileFil: Vargas, Nataly C. E.. Hospital Nacional Almanzor Aguinaga Asenjo; PerúFil: Güzelbulut, Fatih. No especifíca;Fil: Garcia, Sandro R.. Hospital Iv Víctor Lazarte Echegaray; PerúFil: Aguirre, Jonathan. Hospital Angeles del Pedregal; MéxicoFil: Anders, Margarita. Hospital Alemán; ArgentinaFil: Ratusnu, Natalia. Hospital Regional de Ushuaia; ArgentinaFil: Hatemi, Ibrahim. No especifíca;Fil: Mendizabal, Manuel. Universidad Austral; ArgentinaFil: Floreani, Annarosa. Università di Padova; ItaliaFil: Fagiuoli, Stefano. No especifíca;Fil: Silva, Marcelo. Universidad Austral; ArgentinaFil: Idilman, Ramazan. No especifíca;Fil: Satapathy, Sanjaya K.. No especifíca;Fil: Silveira, Marina. University of Yale. School of Medicine; Estados UnidosFil: Drenth, Joost P. H.. No especifíca;Fil: Dalekos, George N.. No especifíca;Fil: N.Assis, David. University of Yale. School of Medicine; Estados UnidosFil: Björnsson, Einar. No especifíca;Fil: Boyer, James L.. University of Yale. School of Medicine; Estados UnidosFil: Yoshida, Eric M.. University of British Columbia; CanadáFil: Invernizzi, Pietro. Università degli Studi di Milano; ItaliaFil: Levy, Cynthia. University of Miami; Estados UnidosFil: Montano Loza, Aldo J.. University of Alberta; CanadáFil: Schiano, Thomas D.. No especifíca;Fil: Ridruejo, Ezequiel. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Wahlin, Staffan. No especifíca

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe
    corecore