1,336 research outputs found
Accretion Signatures from Massive Young Stellar Objects
High resolution (lambda / Delta-lambda = 50,000) K-band spectra of massive,
embedded, young stellar objects are presented. The present sample consists of
four massive young stars located in nascent clusters powering Galactic giant H
II regions. Emission in the 2.3 micron 2--0 vibrational--rotational bandhead of
CO is observed. A range of velocity broadened profiles seen in three of the
objects is consistent with the emission arising from a circumstellar disk seen
at various inclination angles. Br gamma spectra of the same spectral and
spatial resolution are also presented which support an accretion disk or torus
model for massive stars. In the fourth object, Br emission suggesting a
rotating torus is observed, but the CO profile is narrow, indicating that there
may be different CO emission mechanisms in massive stars and this is consistent
with earlier observations of the BN object and MWC 349. To--date, only young
massive stars of late O or early B types have been identified with clear
accretion disk signatures in such embedded clusters. Often such stars are found
in the presence of other more massive stars which are revealed by their
photospheric spectra but which exhibit no disk signatures. This suggests the
timescale for dissipating their disks is much faster than the less massive OB
stars or that the most massive stars do not form with accretion disks.Comment: 28 pages, 10 Figures, accepted for publication in the Astrophysical
Journa
First visual orbit for the prototypical colliding-wind binary WR 140
Wolf-Rayet stars represent one of the final stages of massive stellar
evolution. Relatively little is known about this short-lived phase and we
currently lack reliable mass, distance, and binarity determinations for a
representative sample. Here we report the first visual orbit for WR
140(=HD193793), a WC7+O5 binary system known for its periodic dust production
episodes triggered by intense colliding winds near periastron passage. The IOTA
and CHARA interferometers resolved the pair of stars in each year from
2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining
our results with the recent improved double-line spectroscopic orbit of Fahed
et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/-
0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star
with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with
uncertainties times 6 smaller than previous work and paves the way for detailed
modeling of the system. Our newly measured flux ratios at the near-infrared H
and Ks bands allow an SED decomposition and analysis of the component
evolutionary states.Comment: Complete OIFITS dataset included via Data Conservancy Projec
Direct observation of substitutional Ga after ion implantation in Ge by means of extended x-ray absorption fine structure
Identification of SH ro-vibrational lines in R And
We report the identification of SH ro-vibrational lines in the
published high-resolution infrared spectrum of the S-type star, R And. This is
the first astronomical detection of this molecule. The lines show inverse
P-Cygni profiles, indicating infall motion of the molecular layer due to
stellar pulsation. A simple spherical shell model with a constant infall
velocity is adopted to determine the condition of the layer. It is found that a
single excitation temperature of 2200 K reproduces the observed line
intensities satisfactory. SH is located in a layer from 1.0 to ~1.1 stellar
radii, which is moving inward with a velocity of 9 km s-1. These results are
consistent with the previous measurements of CO transitions. The
estimated molecular abundance SH/H is 1x10^-7, consistent with a thermal
equilibrium calculation.Comment: 10 pages, 2 figures. Accepted for publication in ApJ Letter
Type II Quasars from the Sloan Digital Sky Survey: V. Imaging host galaxies with the Hubble Space Telescope
Type II quasars are luminous Active Galactic Nuclei whose centers are
obscured by large amounts of gas and dust. In this paper we present 3-band HST
images of nine type II quasars with redshifts 0.2 < z < 0.4 selected from the
Sloan Digital Sky Survey based on their emission line properties. The intrinsic
luminosities of these AGN are estimated to be -24 > M_B > -26, but optical
obscuration allows their host galaxies to be studied unencumbered by bright
nuclei. Each object has been imaged in three continuum filters (`UV', `blue'
and `yellow') placed between the strong emission lines. The spectacular, high
quality images reveal a wealth of details about the structure of the host
galaxies and their environments. Six of the nine galaxies in the sample are
ellipticals with de Vaucouleurs light profiles, one object has a well-defined
disk component and the remaining two have marginal disks. Stellar populations
of type II quasar hosts are more luminous (by a median of 0.3-0.7 mag,
depending on the wavelength) and bluer (by about 0.4 mag) than are M* galaxies
at the same redshift. When smooth fits to stellar light are subtracted from the
images, we find both positive and negative residuals that become more prominent
toward shorter wavelengths. We argue that the negative residuals are due to
kpc-scale dust obscuration, while most positive residuals are due to the light
from the nucleus scattered off interstellar material in the host galaxy.
Scattered light makes a significant contribution to the broad band continuum
emission and can be the dominant component of the extended emission in the UV
in extreme cases.Comment: 51 pages, including 12 grey scale figures, 4 color figures, 5 tables.
In press in AJ. Version with higher-resolution images available at
http://www.astro.princeton.edu/~nadia/qso2.html. (Minor changes in response
to the referee report
Planet Formation Imager (PFI): Introduction and Technical Considerations
Complex non-linear and dynamic processes lie at the heart of the planet
formation process. Through numerical simulation and basic observational
constraints, the basics of planet formation are now coming into focus. High
resolution imaging at a range of wavelengths will give us a glimpse into the
past of our own solar system and enable a robust theoretical framework for
predicting planetary system architectures around a range of stars surrounded by
disks with a diversity of initial conditions. Only long-baseline interferometry
can provide the needed angular resolution and wavelength coverage to reach
these goals and from here we launch our planning efforts. The aim of the
"Planet Formation Imager" (PFI) project is to develop the roadmap for the
construction of a new near-/mid-infrared interferometric facility that will be
optimized to unmask all the major stages of planet formation, from initial dust
coagulation, gap formation, evolution of transition disks, mass accretion onto
planetary embryos, and eventual disk dispersal. PFI will be able to detect the
emission of the cooling, newly-formed planets themselves over the first 100
Myrs, opening up both spectral investigations and also providing a vibrant look
into the early dynamical histories of planetary architectures. Here we
introduce the Planet Formation Imager (PFI) Project
(www.planetformationimager.org) and give initial thoughts on possible facility
architectures and technical advances that will be needed to meet the
challenging top-level science requirements.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2014, Paper ID 9146-35, 10 pages, 2 Figure
Patterns of atrophy in pathologically confirmed dementias: a voxelwise analysis
OBJECTIVE: Imaging is recommended to support the clinical diagnoses of dementias, yet imaging research studies rarely have pathological confirmation of disease. This study aims to characterise patterns of brain volume loss in six primary pathologies compared with controls and to each other. METHODS: One hundred and eighty-six patients with a clinical diagnosis of dementia and histopathological confirmation of underlying pathology, and 73 healthy controls were included in this study. Voxel-based morphometry, based on ante-mortem T1-weighted MRI, was used to identify cross-sectional group differences in brain volume. RESULTS: Early-onset and late-onset Alzheimer's disease exhibited different patterns of grey matter volume loss, with more extensive temporoparietal involvement in the early-onset group, and more focal medial temporal lobe loss in the late-onset group. The Presenilin-1 group had similar parietal involvement to the early-onset group with localised volume loss in the thalamus, medial temporal lobe and temporal neocortex. Lewy body pathology was associated with less extensive volume loss than the other pathologies, although precentral/postcentral gyri volume was reduced in comparison with other pathological groups. Tau and TDP43A pathologies demonstrated similar patterns of frontotemporal volume loss, although less extensive on the right in the 4-repeat-tau group, with greater parietal involvement in the TDP43A group. The TDP43C group demonstrated greater left anterior-temporal involvement. CONCLUSIONS: Pathologically distinct dementias exhibit characteristic patterns of regional volume loss compared with controls and other dementias. Voxelwise differences identified in these cohorts highlight imaging signatures that may aid in the differentiation of dementia subtypes during life. The results of this study are available for further examination via NeuroVault (http://neurovault.org/collections/ADHMHOPN/)
Spectral and spatial imaging of the Be+sdO binary phi Persei
The rapidly rotating Be star phi Persei was spun up by mass and angular
momentum transfer from a now stripped-down, hot subdwarf companion. Here we
present the first high angular resolution images of phi Persei made possible by
new capabilities in longbaseline interferometry at near-IR and visible
wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the
CHARA Array. Additional MIRC-only observations were performed to track the
orbital motion of the companion, and these were fit together with new and
existing radial velocity measurements of both stars to derive the complete
orbital elements and distance. The hot subdwarf companion is clearly detected
in the near-IR data at each epoch of observation with a flux contribution of
1.5% in the H band, and restricted fits indicate that its flux contribution
rises to 3.3% in the visible. A new binary orbital solution is determined by
combining the astrometric and radial velocity measurements. The derived stellar
masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf
secondary, respectively. The inferred distance (186 +- 3 pc), kinematical
properties, and evolutionary state are consistent with membership of phi Persei
in the alpha Per cluster. From the cluster age we deduce significant
constraints on the initial masses and evolutionary mass transfer processes that
transformed the phi Persei binary system. The interferometric data place strong
constraints on the Be disk elongation, orientation, and kinematics, and the
disk angular momentum vector is coaligned with and has the same sense of
rotation as the orbital angular momentum vector. The VEGA visible continuum
data indicate an elongated shape for the Be star itself, due to the combined
effects of rapid rotation, partial obscuration of the photosphere by the
circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne
Rotating solitons and non-rotating, non-static black holes
It is shown that the non-Abelian black hole solutions have stationary
generalizations which are parameterized by their angular momentum and electric
Yang-Mills charge. In particular, there exists a non-static class of stationary
black holes with vanishing angular momentum. It is also argued that the
particle-like Bartnik-McKinnon solutions admit slowly rotating, globally
regular excitations. In agreement with the non-Abelian version of the staticity
theorem, these non-static soliton excitations carry electric charge, although
their non-rotating limit is neutral.Comment: 5 pages, REVTe
Coastal oceanography and sedimentology in New Zealand, 1967-91.
This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years
- …
