929 research outputs found

    Accelerator Design for the CHESS-U Upgrade

    Full text link
    During the summer and fall of 2018 the Cornell High Energy Synchrotron Source (CHESS) is undergoing an upgrade to increase high-energy flux for x-ray users. The upgrade requires replacing one-sixth of the Cornell Electron Storage Ring (CESR), inverting the polarity of half of the CHESS beam lines, and switching to single-beam on-axis operation. The new sextant is comprised of six double-bend achromats (DBAs) with combined-function dipole-quadrupoles. Although the DBA design is widely utilized and well understood, the constraints for the CESR modifications make the CHESS-U lattice unique. This paper describes the design objectives, constraints, and implementation for the CESR accelerator upgrade for CHESS-U

    The Partition Function of Multicomponent Log-Gases

    Full text link
    We give an expression for the partition function of a one-dimensional log-gas comprised of particles of (possibly) different integer charge at inverse temperature {\beta} = 1 (restricted to the line in the presence of a neutralizing field) in terms of the Berezin integral of an associated non- homogeneous alternating tensor. This is the analog of the de Bruijn integral identities [3] (for {\beta} = 1 and {\beta} = 4) ensembles extended to multicomponent ensembles.Comment: 14 page

    Cysteines and N-glycosylation sites conserved among all alphaherpesviruses regulate membrane fusion in herpes simplex virus 1 infection

    Get PDF
    © 2017 American Society for Microbiology. Neurotropism is a defining characteristic of alphaherpesvirus pathogenicity. Glycoprotein K (gK) is a conserved virion glycoprotein of all alphaherpesviruses that is not found in other herpesvirus subfamilies. The extracellular amino terminus of gK has been shown to be important to the ability of the prototypic alphaherpesvirus herpes simplex virus 1 (HSV-1) to enter neurons via axonal termini. Here, we determined the role of the two conserved N-linked glycosylation (N48 and N58) sites of gK in virus-induced cell fusion and replication. We found that N-linked glycosylation is important to the regulation of HSV-1-induced membrane fusion since mutating N58 to alanine (N58A) caused extensive virus-induced cell fusion. Due to the known contributions of N-linked glycosylation to protein processing and correct disulfide bond formation, we investigated whether the conserved extracellular cysteine residues within the amino terminus of gK contributed to the regulation of HSV-1-induced membrane fusion. We found that mutation of C37 and C114 residues led to a gK-null phenotype characterized by very small plaque formation and drastic reduction in infectious virus production, while mutation of C82 and C243 caused extensive virus-induced cell fusion. Comparison of N-linked glycosylation and cysteine mutant replication kinetics identified disparate effects on infectious virion egress from infected cells. Specifically, cysteine mutations caused defects in the accumulation of infectious virus in both the cellular and supernatant fractions, while glycosylation site mutants did not adversely affect virion egress from infected cells. These results demonstrate a critical role for the N glycosylation sites and cysteines for the structure and function of the amino terminus of gK

    Large deviations of the maximal eigenvalue of random matrices

    Full text link
    We present detailed computations of the 'at least finite' terms (three dominant orders) of the free energy in a one-cut matrix model with a hard edge a, in beta-ensembles, with any polynomial potential. beta is a positive number, so not restricted to the standard values beta = 1 (hermitian matrices), beta = 1/2 (symmetric matrices), beta = 2 (quaternionic self-dual matrices). This model allows to study the statistic of the maximum eigenvalue of random matrices. We compute the large deviation function to the left of the expected maximum. We specialize our results to the gaussian beta-ensembles and check them numerically. Our method is based on general results and procedures already developed in the literature to solve the Pastur equations (also called "loop equations"). It allows to compute the left tail of the analog of Tracy-Widom laws for any beta, including the constant term.Comment: 62 pages, 4 figures, pdflatex ; v2 bibliography corrected ; v3 typos corrected and preprint added ; v4 few more numbers adde

    Observations and predictions at CesrTA, and outlook for ILC

    Full text link
    In this paper, we will describe some of the recent experimental measurements [1, 2, 3] performed at CESRTA [4], and the supporting simulations, which probe the interaction of the electron cloud with the stored beam. These experiments have been done over a wide range of beam energies, emittances, bunch currents, and fill patterns, to gather sufficient information to be able to fully characterize the beam-electron-cloud interaction and validate the simulation programs. The range of beam conditions is chosen to be as close as possible to those of the ILC damping ring, so that the validated simulation programs can be used to predict the performance of these rings with regard to electroncloud- related phenomena. Using the new simulation code Synrad3D to simulate the synchrotron radiation environment, a vacuum chamber design has been developed for the ILC damping ring which achieves the required level of photoelectron suppression. To determine the expected electron cloud density in the ring, EC buildup simulations have been done based on the simulated radiation environment and on the expected performance of the ILC damping ring chamber mitigation prescriptions. The expected density has been compared with analytical estimates of the instability threshold, to verify that the ILC damping ring vacuum chamber design is adequate to suppress the electron cloud single-bunch head-tail instability.Comment: 11 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Assessment of genotype imputation methods

    Get PDF
    Several methods have been proposed to impute genotypes at untyped markers using observed genotypes and genetic data from a reference panel. We used the Genetic Analysis Workshop 16 rheumatoid arthritis case-control dataset to compare the performance of four of these imputation methods: IMPUTE, MACH, PLINK, and fastPHASE. We compared the methods' imputation error rates and performance of association tests using the imputed data, in the context of imputing completely untyped markers as well as imputing missing genotypes to combine two datasets genotyped at different sets of markers. As expected, all methods performed better for single-nucleotide polymorphisms (SNPs) in high linkage disequilibrium with genotyped SNPs. However, MACH and IMPUTE generated lower imputation error rates than fastPHASE and PLINK. Association tests based on allele "dosage" from MACH and tests based on the posterior probabilities from IMPUTE provided results closest to those based on complete data. However, in both situations, none of the imputation-based tests provide the same level of evidence of association as the complete data at SNPs strongly associated with disease

    Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups.

    Get PDF
    OBJECTIVES: Idiopathic inflammatory myopathies (IIM) are a spectrum of rare autoimmune diseases characterised clinically by muscle weakness and heterogeneous systemic organ involvement. The strongest genetic risk is within the major histocompatibility complex (MHC). Since autoantibody presence defines specific clinical subgroups of IIM, we aimed to correlate serotype and genotype, to identify novel risk variants in the MHC region that co-occur with IIM autoantibodies. METHODS: We collected available autoantibody data in our cohort of 2582 Caucasian patients with IIM. High resolution human leucocyte antigen (HLA) alleles and corresponding amino acid sequences were imputed using SNP2HLA from existing genotyping data and tested for association with 12 autoantibody subgroups. RESULTS: We report associations with eight autoantibodies reaching our study-wide significance level of p\u3c2.9Ă—10 CONCLUSIONS: These findings provide new insights regarding the functional consequences of genetic polymorphisms within the MHC. As autoantibodies in IIM correlate with specific clinical features of disease, understanding genetic risk underlying development of autoantibody profiles has implications for future research

    Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2.

    Get PDF
    Src homology 3 (SH3) domains are conserved protein modules 50-70 amino acids long found in a variety of proteins with important roles in signal transduction. These domains have been shown to mediate protein-protein interactions by binding short proline-rich regions in ligand proteins. However, the ligand preferences of most SH3 domains and the role of these preferences in regulating SH3-mediated protein-protein interactions remain poorly defined. We have used a phage-displayed library of peptides of the form X6PXXPX6 to identify ligands for eight different SH3 domains. Using this approach, we have determined that each SH3 domain prefers peptide ligands with distinct sequence characteristics. Specifically, we have found that the Src SH3 domain selects peptides sharing the consensus motif LXXRPLPXpsiP, whereas Yes SH3 selects psiXXRPLPXLP, Abl SH3 selects PPXthetaXPPPpsiP, Cortactin SH3 selects +PPpsiPXKPXWL, p53bp2 SH3 selects RPXpsiPpsiR+SXP, PLCgamma SH3 selects PPVPPRPXXTL, Crk N-terminal SH3 selects psiPpsiLPpsiK, and Grb2 N-terminal SH3 selects +thetaDXPLPXLP (where psi, theta, and + represent aliphatic, aromatic, and basic residues, respectively). Furthermore, we have compared the binding of phage expressing peptides related to each consensus motif to a panel of 12 SH3 domains. Results from these experiments support the ligand preferences identified in the peptide library screen and evince the ability of SH3 domains to discern subtle differences in the primary structure of potential ligands. Finally, we have found that most known SH3-binding proteins contain proline-rich regions conforming to the ligand preferences of their respective SH3 targets
    • …
    corecore