3,706 research outputs found

    The limits of a heritage at risk framework: the construction of post-disaster cultural heritage in Banda Aceh, Indonesia

    Get PDF
    This paper discusses what it means to label heritage as being ‘at risk’ in post-disaster landscapes in the city of Banda Aceh, Indonesia, following the 2004 Indian Ocean tsunami. It questions the relevance of a ‘heritage at risk’ framework, pointing out the issues associated with starting from this popular threat-based model of preservation in the aftermath of near or total destruction. By challenging the hegemony of a ‘heritage at risk’ rhetorical device that constructs heritage typologies, this debate focuses instead on the emergence and mastering of new heritage in post-tsunami Aceh, and the ways in which a shift in focus is able to document and preserve the emergence of unique heritage constructs and priorities. This paper promotes the study of heritage as a performance that transcends an emphasis on victimhood, toward framing a heritage construct that is productive and dynamic, a steward for post-disaster identities

    Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks

    Get PDF
    Tensor network algorithms provide a suitable route for tackling real-time dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1) lattice gauge theory in (1+1) dimensions in the presence of dynamical matter for different mass and electric field couplings, a theory akin to quantum-electrodynamics in one-dimension, which displays string-breaking: the confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric field and particle fluctuations: we determine a dynamical state diagram for string breaking and quantitatively evaluate the time-scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present the variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.Comment: 15 pages, 25 figures. Published versio

    Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation

    Full text link
    We show that gauge invariant quantum link models, Abelian and non-Abelian, can be exactly described in terms of tensor networks states. Quantum link models represent an ideal bridge between high-energy to cold atom physics, as they can be used in cold-atoms in optical lattices to study lattice gauge theories. In this framework, we characterize the phase diagram of a (1+1)-d quantum link version of the Schwinger model in an external classical background electric field: the quantum phase transition from a charge and parity ordered phase with non-zero electric flux to a disordered one with a net zero electric flux configuration is described by the Ising universality class.Comment: 9 pages, 9 figures. Published versio

    Quantum-enhanced gyroscopy with rotating anisotropic Bose–Einstein condensates

    Get PDF
    High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements

    Loops and Strings in a Superconducting Lattice Gauge Simulator

    Get PDF
    We propose an architecture for an analog quantum simulator of electromagnetism in 2+1 dimensions, based on an array of superconducting fluxonium devices. The encoding is in the integer (spin-1 representation of the quantum link model formulation of compact U(1) lattice gauge theory. We show how to engineer Gauss' law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by nonlocal order parameters from Wilson loops and disorder parameters from 't Hooft strings. We show how to construct such operators in this model and how to measure them nondestructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Numerical evidence is found for the existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.Comment: 17 pages, 5 figures. Published versio

    'There is no heritage in Qatar': Orientalism, colonialism and other problematic histories

    Get PDF
    This article discusses the construction of Qatari heritage in the context of pre-conceived ideas of ‘cultural heritage’ predominant in the global and regional spheres that operate in this country. It considers the location of Qatar within Middle Eastern heritage discourses and debates, and identifies productive similarities as well as unique avenues for further discussion. The authors identify the challenge of formulating methodologies that are able to recognize, accommodate, encompass and reflect local heritage dialogues and practices that exist in Qatar, which may aid in further researching the wider Arabian Peninsula, its histories and heritages

    Engineering entanglement for metrology with rotating matter waves

    Get PDF
    Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation
    • …
    corecore