2,942 research outputs found

    Study of liquid jet impingement on screens

    Get PDF
    A model is presented for an unconfined flow, such as a free jet, impinging on a screen which incorporates the influence of liquid deflection by the screen. The boundary layer blockage coefficient is introduced. This coefficient depends on the screen weave geometry and the jet impingement angle, and essentially accounts for the increase in fluid particle trajectory length through the screen resulting from the flow deflection. Comparisons were made with previous experimental studies to determine empirical values of the blockage coefficient. It is concluded that the new model reliably predicts the bulk flow and penetration characteristics of an impinging liquid jet interacting with a screen

    Simulations of the symbiotic recurrent nova V407 Cyg. I. Accretion and shock evolutions

    Full text link
    The shock interaction and evolution of nova ejecta with a wind from a red giant star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the March 2010 outburst of the symbiotic recurrent nova V407~Cygni from the quiescent phase to its eruption phase. The circumstellar density enhancement due to wind-white dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the red giant wind speed. Unlike another recurrent nova, RS~Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe an aspherical density distribution with ∼20%\sim 20\% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the red giant mass loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the red giant wind generates strong Rayleigh-Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. The ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100−300\sim 100-300 km-s−1^{-1}, depending on model, which is consistent with the observed extended redward emission in [N~II] lines in April 2011.Comment: ApJ, In Press. Simulation Animation: https://youtu.be/g5Nu7vDfCO

    The Impact of Type Ia Supernova Ejecta on Binary Companions

    Full text link
    We present adaptive mesh refinement (AMR) hydrodynamical simulations of the interaction between Type Ia supernovae and their companion stars within the context of the single-degenerate model. Results for 3D red-giant companions without binary evolution agree with previous 2D results by Marietta et al. We also consider evolved helium-star companions in 2D. For a range of helium-star masses and initial binary separations, we examine the mass unbound by the interaction and the kick velocity delivered to the companion star. We find that unbound mass versus separation obeys a power law with index between -3.1 and -4.0, consistent with previous results for hydrogen-rich companions. Kick velocity also obeys a power-law relationship with binary separation, but the slope differs from those found for hydrogen-rich companions. Assuming accretion via Roche-lobe overflow, we find that the unbound helium mass is consistent with observational limits. Ablation (shock heating) appears to be more important in removing gas from helium-star companions than from hydrogen-rich ones, though stripping (momentum transfer) dominates in both cases.Comment: 6 pages, 2 figures, to appear in the proceedings of the conference "Binary Star Evolution: Mass Loss, Accretion, and Mergers" at Mykonos, Greece, June 22-25, 201

    Search for surviving companions in type Ia supernova remnants

    Full text link
    The nature of the progenitor systems of type~Ia supernovae is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions. Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- and helium-rich surviving companions, the color and magnitude of main-sequence- and helium-rich surviving companions are predicted as functions of time. The surviving companion candidates in Galactic type~Ia supernova remnants and nearby extragalactic type~Ia supernova remnants are discussed. We find that the maximum detectable distance of main-sequence surviving companions (helium-rich surviving companions) is 0.6−40.6-4~Mpc (0.4−160.4-16~Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for surviving companions. However, only five Ia~SNRs have been searched for surviving companions, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of type Ia supernovae, we encourage the search for surviving companions in other nearby type Ia supernova remnants.Comment: 25 pages, 5 figures, and 2 tables. Accepted for publication in Ap

    Robust Emergent Activity in Dynamical Networks

    Get PDF
    We study the evolution of a random weighted network with complex nonlinear dynamics at each node, whose activity may cease as a result of interactions with other nodes. Starting from a knowledge of the micro-level behaviour at each node, we develop a macroscopic description of the system in terms of the statistical features of the subnetwork of active nodes. We find the asymptotic characteristics of this subnetwork to be remarkably robust: the size of the active set is independent of the total number of nodes in the network, and the average degree of the active nodes is independent of both the network size and its connectivity. These results suggest that very different networks evolve to active subnetworks with the same characteristic features. This has strong implications for dynamical networks observed in the natural world, notably the existence of a characteristic range of links per species across ecological systems.Comment: 4 pages, 5 figure

    Rapid fluctuations in the high-energy X-ray flux from a source in Crux

    Get PDF
    Balloonborne X ray telescopic observations of two point sources in Cru
    • …
    corecore